PubTransformer

A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

Animal Diseases - Top 30 Publications

Suspect drug interaction in gimmers.

Suspect serious adverse event associated with vaccination in gimmersMultiple congenital defects in a stillborn calfSuspected alpha mannosidosis in a bovine fetusClostridial myocarditis in a two-week-old lambOtitis media in pigs These are among matters discussed in the disease surveillance report for May 2017 from SAC Consulting: Veterinary Services (SAC C VS).

Occupational Animal Exposure Among Persons with Campylobacteriosis and Cryptosporidiosis - Nebraska, 2005-2015.

Campylobacter and Cryptosporidium are two common causes of gastroenteritis in the United States. National incidence rates measured for these pathogens in 2015 were 17.7 and 3.0 per 100,000 population, respectively; Nebraska was among the states with the highest incidence for both campylobacteriosis (26.6) and cryptosporidiosis (≥6.01) (1). Although campylobacteriosis and cryptosporidiosis are primarily transmitted via consumption of contaminated food or water, they can also be acquired through contact with live animals or animal products, including through occupational exposure (2). This exposure route is of particular interest in Nebraska, where animal agriculture and associated industries are an important part of the state's economy. To estimate the percentage of disease that might be related to occupational animal exposure in Nebraska, the Nebraska Department of Health and Human Services (NDHHS) and CDC reviewed deidentified investigation reports from 2005 to 2015 of cases of campylobacteriosis and cryptosporidiosis among Nebraska residents aged ≥14 years. Case investigation notes were searched for evidence of occupational animal exposures, which were classified into discrete categories based on industry, animal/meat, and specific work activity/exposure. Occupational animal exposure was identified in 16.6% of 3,352 campylobacteriosis and 8.7% of 1,070 cryptosporidiosis cases, among which animal production (e.g., farming or ranching) was the most commonly mentioned industry type (68.2% and 78.5%, respectively), followed by employment in animal slaughter and processing facilities (16.3% and 5.4%, respectively). Among animal/meat occupational exposures, cattle/beef was most commonly mentioned, with exposure to feedlots (concentrated animal feeding operations in which animals are fed on stored feeds) reported in 29.9% of campylobacteriosis and 7.9% of cryptosporidiosis cases. Close contact with animals and manure in feedlots and other farm settings might place workers in these areas at increased risk for infection. It is important to educate workers with occupational animal exposure about the symptoms of enteric diseases and prevention measures. Targeting prevention strategies to high-risk workplaces and activities could help reduce disease.

Topical Cross-Linked HA-Based Hydrogel Accelerates Closure of Corneal Epithelial Defects and Repair of Stromal Ulceration in Companion Animals.

The purpose of this study was to determine the safety of topical ocular administration of a cross-linked, modified hyaluronic acid (xCMHA-S) hydrogel, and its effectiveness in accelerating repair and closure of acute and nonhealing corneal ulcers in companion animals as a veterinary treatment and its utility as a model for therapy in human corneal ulceration.

Enhancing case definitions for surveillance of human monkeypox in the Democratic Republic of Congo.

Human monkeypox (MPX) occurs at appreciable rates in the Democratic Republic of Congo (DRC). Infection with varicella zoster virus (VZV) has a similar presentation to that of MPX, and in areas where MPX is endemic these two illnesses are commonly mistaken. This study evaluated the diagnostic utility of two surveillance case definitions for MPX and specific clinical characteristics associated with laboratory-confirmed MPX cases.

Characterization of five unclassified orthobunyaviruses (Bunyaviridae) from Africa and the Americas.

The Bunyaviridae family is made up of a diverse range of viruses, some of which cause disease and are a cause for concern in human and veterinary health. Here, we report the genomic and antigenic characterization of five previously uncharacterized bunyaviruses. Based on their ultrastructure, antigenic relationships and phylogenomic relationships, the five viruses are classified as members of the Orthobunyavirus genus. Three are viruses in the California encephalitis virus serogroup and are related to Trivittatus virus; the two others are most similar to the Mermet virus in the Simbu serogroup, and to the Tataguine virus, which is not currently assigned to a serogroup. Each of these five viruses was pathogenic to newborn mice, indicating their potential to cause illness in humans and other animals.

African swine fever in eastern Europe: the risk to the UK.

This article has been prepared by Helen Roberts of the Defra/APHA International Disease Monitoring team.

Disease surveillance in England and Wales, August 2017.

Current and emerging issues: psoroptic mange in cattleHighlights from the scanning surveillance networkUpdate on international disease threatsAfrican swine fever in eastern Europe and the risk to the UKThese are among matters discussed in the Animal and Plant Health Agency's (APHA's) disease surveillance report for August 2017.

Absence of Sigma 1 Receptor Accelerates Photoreceptor Cell Death in a Murine Model of Retinitis Pigmentosa.

Sigma 1 Receptor (Sig1R) is a novel therapeutic target in neurodegenerative diseases, including retinal disease. Sig1R-/- mice have late-onset retinal degeneration with ganglion cell loss that worsens under stress. Whether Sig1R plays a role in maintaining other retinal neurons is unknown, but was investigated here using rd10 mice, a model of severe photoreceptor degeneration.

Zoonotic Chlamydia caviae Presenting as Community-Acquired Pneumonia.

DNA microarray assay and real-time PCR as useful tools for studying the respiratory tract Mycoplasma populations in young dairy calves.

With more than 120 species, the genus Mycoplasma is one of the largest taxa in the class Mollicutes, a group of micro-organisms that are characterized by apparent simplicity and to which important animal pathogens belong. Mycoplasmabovis is the most frequently identified pathogenic Mycoplasma in cattle; however, the prevalence of other Mycoplasma species living in calves' airways is poorly understood. The aim of this work was to characterize the respiratory tract mycoplasma populations in calves on one of the largest dairy farms in Italy using a real-time PCR assay and a DNA microarray assay.

Conditional Müller Cell Ablation Leads to Retinal Iron Accumulation.

Retinal iron accumulation is observed in a wide range of retinal degenerative diseases, including AMD. Previous work suggests that Müller glial cells may be important mediators of retinal iron transport, distribution, and regulation. A transgenic model of Müller cell loss recently demonstrated that primary Müller cell ablation leads to blood-retinal barrier leakage and photoreceptor degeneration, and it recapitulates clinical features observed in macular telangiectasia type 2 (MacTel2), a rare human disease that features Müller cell loss. We used this mouse model to determine the effect of Müller cell loss on retinal iron homeostasis.

Human leptospirosis in Seychelles: A prospective study confirms the heavy burden of the disease but suggests that rats are not the main reservoir.

Leptospirosis is a bacterial zoonosis caused by pathogenic Leptospira for which rats are considered as the main reservoir. Disease incidence is higher in tropical countries, especially in insular ecosystems. Our objectives were to determine the current burden of leptospirosis in Seychelles, a country ranking first worldwide according to historical data, to establish epidemiological links between animal reservoirs and human disease, and to identify drivers of transmission.

Modeling zoonotic cutaneous leishmaniasis incidence in central Tunisia from 2009-2015: Forecasting models using climate variables as predictors.

Transmission of zoonotic cutaneous leishmaniasis (ZCL) depends on the presence, density and distribution of Leishmania major rodent reservoir and the development of these rodents is known to have a significant dependence on environmental and climate factors. ZCL in Tunisia is one of the most common forms of leishmaniasis. The aim of this paper was to build a regression model of ZCL cases to identify the relationship between ZCL occurrence and possible risk factors, and to develop a predicting model for ZCL's control and prevention purposes. Monthly reported ZCL cases, environmental and bioclimatic data were collected over 6 years (2009-2015). Three rural areas in the governorate of Sidi Bouzid were selected as the study area. Cross-correlation analysis was used to identify the relevant lagged effects of possible risk factors, associated with ZCL cases. Non-parametric modeling techniques known as generalized additive model (GAM) and generalized additive mixed models (GAMM) were applied in this work. These techniques have the ability to approximate the relationship between the predictors (inputs) and the response variable (output), and express the relationship mathematically. The goodness-of-fit of the constructed model was determined by Generalized cross-validation (GCV) score and residual test. There were a total of 1019 notified ZCL cases from July 2009 to June 2015. The results showed seasonal distribution of reported ZCL cases from August to January. The model highlighted that rodent density, average temperature, cumulative rainfall and average relative humidity, with different time lags, all play role in sustaining and increasing the ZCL incidence. The GAMM model could be applied to predict the occurrence of ZCL in central Tunisia and could help for the establishment of an early warning system to control and prevent ZCL in central Tunisia.

A Macrophage Response to Mycobacterium leprae Phenolic Glycolipid Initiates Nerve Damage in Leprosy.

Mycobacterium leprae causes leprosy and is unique among mycobacterial diseases in producing peripheral neuropathy. This debilitating morbidity is attributed to axon demyelination resulting from direct interaction of the M. leprae-specific phenolic glycolipid 1 (PGL-1) with myelinating glia and their subsequent infection. Here, we use transparent zebrafish larvae to visualize the earliest events of M. leprae-induced nerve damage. We find that demyelination and axonal damage are not directly initiated by M. leprae but by infected macrophages that patrol axons; demyelination occurs in areas of intimate contact. PGL-1 confers this neurotoxic response on macrophages: macrophages infected with M. marinum-expressing PGL-1 also damage axons. PGL-1 induces nitric oxide synthase in infected macrophages, and the resultant increase in reactive nitrogen species damages axons by injuring their mitochondria and inducing demyelination. Our findings implicate the response of innate macrophages to M. leprae PGL-1 in initiating nerve damage in leprosy.

Isolation and full-genome sequences of Japanese encephalitis virus genotype I strains from Cambodian human patients, mosquitoes and pigs.

Japanese encephalitis remains the most important cause of viral encephalitis in humans in several southeast Asian countries, including Cambodia, causing at least 65 000 cases of encephalitis per year. This vector-borne viral zoonosis - caused by Japanese encephalitis virus (JEV) - is considered to be a rural disease and is transmitted by mosquitoes, with birds and pigs being the natural reservoirs, while humans are accidental hosts. In this study we report the first two JEV isolations in Cambodia from human encephalitis cases from two studies on the aetiology of central nervous system disease, conducted at the two major paediatric hospitals in the country. We also report JEV isolation from Culextritaeniorhynchus mosquitoes and from pig samples collected in two farms, located in peri-urban and rural areas. Out of 11 reverse-transcription polymerase chain reaction-positive original samples, we generated full-genome sequences from 5 JEV isolates. Five additional partial sequences of the JEV NS3 gene from viruses detected in five pigs and one complete coding sequence of the envelope gene of a strain identified in a pig were generated. Phylogenetic analyses revealed that JEV detected in Cambodia belonged to genotype I and clustered in two clades: genotype I-a, mainly comprising strains from Thailand, and genotype I-b, comprising strains from Vietnam that dispersed northwards to China. Finally, in this study, we provide proof that the sequenced JEV strains circulate between pigs, Culex tritaeniorhynchus and humans in the Phnom Penh vicinity.

Quantitative Characterization of Autoimmune Uveoretinitis in an Experimental Mouse Model.

To accurately evaluate the autoimmune inflammation, we aim to develop three quantitative measurements to monitor the inflammatory changes in the retina: retinal-choroidal thickness, major retinal vessel diameter, and electroretinography amplitudes.

Different engagement of TLR2 and TLR4 in Porphyromonas gingivalis vs. ligature-induced periodontal bone loss.

This study was conducted to investigate the roles of different Toll-like receptor (TLR) signaling in Porphyromonas gingivalis (P. gingivalis)-induced and ligature-induced experimental periodontal bone resorption in mice. Wild-type (WT), TLR2 knockout (KO), TLR4KO, and TLR2&4 KO mice with C57/BL6 background were divided into three groups: control, P. gingivalis infection, and ligation. Live P. gingivalis or silk ligatures were placed in the sulcus around maxillary second molars over a 2-week period. Images were captured by digital stereomicroscopy, and the bone resorption area was measured with ImageJ software. The protein expression level of gingival RANKL was measured by ELISA. The gingival mRNA levels of RANKL, IL-1β, TNF-α, and IL-10 were detected by RT-qPCR. The results showed that P. gingivalis induced significant periodontal bone resorption in WT mice and TLR2 KO mice but not in TLR4 KO mice or TLR2&4 KO mice. For all four types of mice, ligation induced significant bone loss compared with that in control groups, and this bone loss was significantly higher than that in the P. gingivalis infection group. RANKL protein expression was significantly increased in the ligation group compared with that in the control group for all four types of mice, and in the P. gingivalis infection group of WT, TLR2 KO, and TLR4 KO mice. Expression patterns of RANKL, IL-1β, TNF-α, and IL-10 mRNA were different in the P. gingivalis infection group and the ligation group in different types of mice. In summary, P. gingivalis-induced periodontal bone resorption is TLR4-dependent, whereas ligation-induced periodontal bone resorption is neither TLR2- nor TLR4-dependent.

Case Report: Polymerase Chain Reaction Testing of Tick Bite Site Samples for the Diagnosis of Human Granulocytic Anaplasmosis.

Human granulocytic anaplasmosis (HGA) is a tick-borne infectious disease caused by Anaplasma phagocytophilum, an obligate intracellular bacterium. Until now, the utility of tick-bite site samples for HGA diagnosis has not been reported. Using a patient's buffy coat and tick-bite site crust samples, we performed polymerase chain reaction (PCR) testing using Ehrlichia- or Anaplasma-specific primers. PCR with buffy coat and crust samples obtained before doxycycline administration was positive. Six days after doxycycline administration, PCR with the buffy coat sample was negative but PCR with a crust tissue sample from the tick-bite site remained positive. This is the first case to suggest that crust tissue at the tick-bite site may be useful for early HGA diagnosis in patients who have already been treated with antibiotics such as doxycycline.

Characterization of Monkeypox virus infection in African rope squirrels (Funisciurus sp.).

Monkeypox (MPX) is a zoonotic disease endemic in Central and West Africa and is caused by Monkeypox virus (MPXV), the most virulent Orthopoxvirus affecting humans since the eradication of Variola virus (VARV). Many aspects of the MPXV transmission cycle, including the natural host of the virus, remain unknown. African rope squirrels (Funisciurus spp.) are considered potential reservoirs of MPXV, as serosurveillance data in Central Africa has confirmed the circulation of the virus in these rodent species [1,2]. In order to understand the tissue tropism and clinical signs associated with infection with MPXV in these species, wild-caught rope squirrels were experimentally infected via intranasal and intradermal exposure with a recombinant MPXV strain from Central Africa engineered to express the luciferase gene. After infection, we monitored viral replication and shedding via in vivo bioluminescent imaging, viral culture and real time PCR. MPXV infection in African rope squirrels caused mortality and moderate to severe morbidity, with clinical signs including pox lesions in the skin, eyes, mouth and nose, dyspnea, and profuse nasal discharge. Both intranasal and intradermal exposures induced high levels of viremia, fast systemic spread, and long periods of viral shedding. Shedding and luminescence peaked at day 6 post infection and was still detectable after 15 days. Interestingly, one sentinel animal, housed in the same room but in a separate cage, also developed severe MPX disease and was euthanized. This study indicates that MPXV causes significant pathology in African rope squirrels and infected rope squirrels shed large quantities of virus, supporting their role as a potential source of MPXV transmission to humans and other animals in endemic MPX regions.

Magnetic Resonance Monitoring of Disease Progression in mdx Mice on Different Genetic Backgrounds.

Genetic modifiers alter disease progression in both preclinical models and subjects with Duchenne muscular dystrophy (DMD). Using multiparametric magnetic resonance (MR) techniques, we compared the skeletal and cardiac muscles of two different dystrophic mouse models of DMD, which are on different genetic backgrounds, the C57BL/10ScSn-Dmdmdx (B10-mdx) and D2.B10-Dmdmdx (D2-mdx). The proton transverse relaxation constant (T2) using both MR imaging and spectroscopy revealed significant age-related differences in dystrophic skeletal and cardiac muscles as compared with their age-matched controls. D2-mdx muscles demonstrated an earlier and accelerated decrease in muscle T2 compared with age-matched B10-mdx muscles. Diffusion-weighted MR imaging indicated differences in the underlying muscle structure between the mouse strains. The fractional anisotropy, mean diffusion, and radial diffusion of water varied significantly between the two dystrophic strains. Muscle structural differences were confirmed by histological analyses of the gastrocnemius, revealing a decreased muscle fiber size and increased fibrosis in skeletal muscle fibers of D2-mdx mice compared with B10-mdx and control. Cardiac involvement was also detected in D2-mdx myocardium based on both decreased function and myocardial T2. These data indicate that MR parameters may be used as sensitive biomarkers to detect fibrotic tissue deposition and fiber atrophy in dystrophic strains.

Replication of a low-pathogenic avian influenza virus is enhanced by chicken ubiquitin-specific protease 18.

Previous research revealed the induction of chicken USP18 (chUSP18) in the lungs of chickens infected with highly pathogenic avian influenza viruses (HPAIVs). This activity was correlated with the degree of pathogenicity of the viruses to chickens. As mammalian ubiquitin-specific protease (USP18) is known to remove type I interferon (IFN I)-inducible ubiquitin-like molecules from conjugated proteins and block IFN I signalling, we explored the function of the chicken homologue of USP18 during avian influenza virus infection. With this aim, we cloned chUSP18 from cultured chicken cells and revealed that the putative chUSP18 ORF comprises 1137 bp. Comparative analysis of the predicted aa sequence of chUSP18 with those of human and mouse USP18 revealed relatively high sequence similarity among the sequences, including domains specific for the ubiquitin-specific processing protease family. Furthermore, we found that chUSP18 expression was induced by chicken IFN I, as observed for mammalian USP18. Experiments based on chUSP18 over-expression and depletion demonstrated that chUSP18 significantly enhanced the replication of a low-pathogenic avian influenza virus (LPAIV), but not an HPAIV. Our findings suggest that chUSP18, being similar to mammalian USP18, acts as a pro-viral factor during LPAIV replication in vitro.

Rab11a is required for porcine reproductive and respiratory syndrome virus induced autophagy to promote viral replication.

Porcine reproductive and respiratory syndrome virus (PRRSV) is the leading virus known to cause massive economic loss in pig industry worldwide. In our previous study, transcriptional profiling of PRRSV-infected lung tissue of Tongcheng and Landrane pigs, which have highly pathogenic PRRSV (HP-PRRSV) susceptibility differences, showed differential expression of Rab11a. The small GTPase Rab11a regulates intracellular membrane trafficking events involved in autophagy. However, the involvement of the convergence of endosomal Rab11a and autophagy pathways during PRRSV infection is still unclear. In this study, we demonstrated that PRRSV infection induced complete autophagy and up-regulated the expression of Rab11a. Furthermore, interference of the expression of Rab11a resulted in the accumulation of endogenous LC3-II and p62, indicating that Rab11a played a vital role in autophagosome maturation. Silencing of Rab11a resulted in a compromise the expression of intracellular viral NSP2 and ORF7. Besides, confocal microscopy analysis showed that viral NSP2 was colocalized with Rab11a in Marc145 cells. Collectively, our findings revealed that Rab11a acted as a proviral host factor that benefited PRRSV replication in a manner that correlates with autophagy.

Comparison of veterinary drugs and veterinary homeopathy: part 2.

Part 2 of this narrative review outlines the theoretical and practical bases for assessing the efficacy and effectiveness of conventional medicines and homeopathic products. Known and postulated mechanisms of action are critically reviewed. The evidence for clinical efficacy of products in both categories, in the form of practitioner experience, meta-analysis and systematic reviews of clinical trial results, is discussed. The review also addresses problems and pitfalls in assessing data, and the ethical and negative aspects of pharmacology and homeopathy in veterinary medicine.

Schmallenberg virus infection in Scottish cattle.

Schmallenberg virus infection on cattle farms in southern ScotlandOutbreaks of infectious bovine rhinotracheitisSalmonella Bovismorbificans infection in cattle and sheepGastric ulceration in pigsTrichomonosis in a sparrowhawk and a hen harrierThese are among matters discussed in the disease surveillance report for April 2017 from SAC Consulting: Veterinary Services (SAC C VS).

Calpain-Dependent Degradation of Nucleoporins Contributes to Motor Neuron Death in a Mouse Model of Chronic Excitotoxicity.

Glutamate-mediated excitotoxicity induces neuronal death by altering various intracellular signaling pathways and is implicated as a common pathogenic pathway in many neurodegenerative diseases. In the case of motor neuron disease, there is significant evidence to suggest that the overactivation of AMPA receptors due to deficiencies in the expression and function of glial glutamate transporters GLT1 and GLAST plays an important role in the mechanisms of neuronal death. However, a causal role for glial glutamate transporter dysfunction in motor neuron death remains unknown. Here, we developed a new animal model of excitotoxicity by conditionally deleting astroglial glutamate transporters GLT1 and GLAST in the spinal cords of mice (GLAST(+/-)/GLT1-cKO). GLAST(+/-)/GLT1-cKO mice (both sexes) exhibited nuclear irregularity and calpain-mediated degradation of nuclear pore complexes (NPCs), which are responsible for nucleocytoplasmic transport. These abnormalities were associated with progressive motor neuron loss, severe paralysis, and shortened lifespan. The nuclear export inhibitor KPT-350 slowed but did not prevent motor neuron death, whereas long-term treatment of the AMPA receptor antagonist perampanel and the calpain inhibitor SNJ-1945 had more persistent beneficial effects. Thus, NPC degradation contributes to AMPA receptor-mediated excitotoxic motor neuronal death, and preventing NPC degradation has robust protective effects. Normalization of NPC function could be a novel therapeutic strategy for neurodegenerative disorders in which AMPA receptor-mediated excitotoxicity is a contributory factor.SIGNIFICANCE STATEMENT Despite glial glutamate transporter dysfunction leading to excitotoxicity has been documented in many neurological diseases, it remains unclear whether its dysfunction is a primary cause or secondary outcome of neuronal death at disease state. Here we show the combined loss of glial glutamate transporters GLT1 and GLAST in spinal cord caused motor neuronal death and hindlimb paralysis. Further, our novel mutant exhibits the nuclear irregularities and calpain-mediated progressive nuclear pore complex degradation. Our study reveals that glial glutamate transporter dysfunction is sufficient to cause motor neuronal death in vivo.

Threonine deficiency decreased intestinal immunity and aggravated inflammation associated with NF-κB and target of rapamycin signalling pathways in juvenile grass carp (Ctenopharyngodon idella) after infection with Aeromonas hydrophila.

This study aimed to investigate the impacts of dietary threonine on intestinal immunity and inflammation in juvenile grass carp. Six iso-nitrogenous semi-purified diets containing graded levels of threonine (3·99-21·66 g threonine/kg) were formulated and fed to fishes for 8 weeks, and then challenged with Aeromonas hydrophila for 14 d. Results showed that, compared with optimum threonine supplementation, threonine deficiency (1) decreased the ability of fish against enteritis, intestinal lysozyme activities (except in the distal intestine), acid phosphatase activities, complement 3 (C3) and C4 contents and IgM contents (except in the proximal intestine (PI)), and it down-regulated the transcript abundances of liver-expressed antimicrobial peptide (LEAP)-2A, LEAP-2B, hepcidin, IgZ, IgM and β-defensin1 (except in the PI) (P<0·05); (2) could up-regulate intestinal pro-inflammatory cytokines TNF-α, IL-1β, IL-6, IL-8 and IL-17D mRNA levels partly related to NF-κB signalling; (3) could down-regulate intestinal anti-inflammatory cytokine transforming growth factor (TGF)-β1, TGF-β2, IL-4/13A (not IL-4/13B) and IL-10 mRNA levels partly by target of rapamycin signalling. Finally, on the basis of the specific growth rate, against the enteritis morbidity and IgM contents, the optimum threonine requirements were estimated to be 14·53 g threonine/kg diet (4·48 g threonine/100 g protein), 15.05 g threonine/kg diet (4·64 g threonine/100 g protein) and 15·17 g threonine/kg diet (4·68 g threonine/100 g protein), respectively.

Caprine brucellosis: A historically neglected disease with significant impact on public health.

Caprine brucellosis is a chronic infectious disease caused by the gram-negative cocci-bacillus Brucella melitensis. Middle- to late-term abortion, stillbirths, and the delivery of weak offspring are the characteristic clinical signs of the disease that is associated with an extensive negative impact in a flock's productivity. B. melitensis is also the most virulent Brucella species for humans, responsible for a severely debilitating and disabling illness that results in high morbidity with intermittent fever, chills, sweats, weakness, myalgia, abortion, osteoarticular complications, endocarditis, depression, anorexia, and low mortality. Historical observations indicate that goats have been the hosts of B. melitensis for centuries; but around 1905, the Greek physician Themistokles Zammit was able to build the epidemiological link between "Malta fever" and the consumption of goat milk. While the disease has been successfully managed in most industrialized countries, it remains a significant burden on goat and human health in the Mediterranean region, the Middle East, Central and Southeast Asia (including India and China), sub-Saharan Africa, and certain areas in Latin America, where approximately 3.5 billion people live at risk. In this review, we describe a historical evolution of the disease, highlight the current worldwide distribution, and estimate (by simple formula) the approximate costs of brucellosis outbreaks to meat- and milk-producing farms and the economic losses associated with the disease in humans. Successful control leading to eradication of caprine brucellosis in the developing world will require a coordinated Global One Health approach involving active involvement of human and animal health efforts to enhance public health and improve livestock productivity.

Physiological and Optical Alterations Precede the Appearance of Cataracts in Cx46fs380 Mice.

Cx46fs380 mice model a human autosomal-dominant cataract caused by a mutant lens connexin46, Cx46. Lenses from Cx46fs380 mice develop cataracts that are first observed at ∼2 months in homozygotes and at ≥4 months in heterozygotes. The present studies were conducted to determine whether Cx46fs380 mouse lenses exhibited abnormalities before there are detectable cataracts.

Viral Retinopathy in Experimental Models of Zika Infection.

Emerging evidence has shown that both congenital and adult Zika virus (ZIKV) infection can cause eye diseases. The goals of the current study were to explore mechanisms and pathophysiology of ZIKV-induced eye defects.

Moderate sensitivity of mouse mammary tumour virus to inhibition by human APOBEC3G.

Infectivity of the mouse mammary tumour virus (MMTV) is inhibited by mouse APOBEC3 (mA3) which is efficiently packaged into virions. As the inhibition is only partial, the virus can replicate in tissues expressing mA3 and complete its replication cycle. Here, we have examined the sensitivity of MMTV to inhibition by a human orthologue of mA3, A3G. We report that the virus containing A3G is only moderately susceptible to inhibition by the human factor. Whereas the vif-deficient HIV-1 vector produced in human epithelial cells expressing endogenous levels of A3G was efficiently inhibited, an MMTV vector remained fully infectious. Greater A3G expression levels were necessary to restrict infectivity of MMTV, but only when the factor retained its deaminase activity. Furthermore, the spreading kinetic of a replication competent MMTV was only moderately accelerated in cells with downmodulated A3G expression. These data suggest that MMTV has evolved a mechanism to neutralize antiviral activity of APOBEC3 proteins.