PubTransformer

A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

Morgan Hennessey - Top 30 Publications

Notes from the Field: Outbreak of Zika Virus Disease - American Samoa, 2016.

During December 2015-January 2016, the American Samoa Department of Health (ASDoH) detected through surveillance an increase in the number of cases of acute febrile rash illness. Concurrently, a case of laboratory-confirmed Zika virus infection, a mosquito-borne flavivirus infection documented to cause microcephaly and other severe brain defects in some infants born to women infected during pregnancy (1,2) was reported in a traveler returning to New Zealand from American Samoa. In the absence of local laboratory capacity to test for Zika virus, ASDoH initiated arboviral disease control measures, including public education and vector source reduction campaigns. On February 1, CDC staff members were deployed to American Samoa to assist ASDoH with testing and surveillance efforts.

Zika Virus Disease in Travelers Returning to the United States, 2010-2014.

Zika virus is an emerging mosquito-borne flavivirus that typically causes a mild febrile illness with rash, arthralgia, or conjunctivitis. Zika virus has recently caused large outbreaks of disease in southeast Asia, Pacific Ocean Islands, and the Americas. We identified all positive Zika virus test results performed at U.S. Centers for Disease Control and Prevention from 2010 to 2014. For persons with test results indicating a recent infection with Zika virus, we collected information on demographics, travel history, and clinical features. Eleven Zika virus disease cases were identified among travelers returning to the United States. The median age of cases was 50 years (range: 29-74 years) and six (55%) were male. Nine (82%) cases had their illness onset from January to April. All cases reported a travel history to islands in the Pacific Ocean during the days preceding illness onset, and all cases were potentially viremic while in the United States. Public health prevention messages about decreasing mosquito exposure, preventing sexual exposure, and preventing infection in pregnant women should be targeted to individuals traveling to or living in areas with Zika virus activity. Health-care providers and public health officials should be educated about the recognition, diagnosis, and prevention of Zika virus disease.

Patterns in Zika Virus Testing and Infection, by Report of Symptoms and Pregnancy Status - United States, January 3-March 5, 2016.

CDC recommends Zika virus testing for potentially exposed persons with signs or symptoms consistent with Zika virus disease, and recommends that health care providers offer testing to asymptomatic pregnant women within 12 weeks of exposure. During January 3-March 5, 2016, Zika virus testing was performed for 4,534 persons who traveled to or moved from areas with active Zika virus transmission; 3,335 (73.6%) were pregnant women. Among persons who received testing, 1,541 (34.0%) reported at least one Zika virus-associated sign or symptom (e.g., fever, rash, arthralgia, or conjunctivitis), 436 (9.6%) reported at least one other clinical sign or symptom only, and 2,557 (56.4%) reported no signs or symptoms. Among 1,541 persons with one or more Zika virus-associated symptoms who received testing, 182 (11.8%) had confirmed Zika virus infection. Among the 2,557 asymptomatic persons who received testing, 2,425 (94.8%) were pregnant women, seven (0.3%) of whom had confirmed Zika virus infection. Although risk for Zika virus infection might vary based on exposure-related factors (e.g., location and duration of travel), in the current setting in U.S. states, where there is no local transmission, most asymptomatic pregnant women who receive testing do not have Zika virus infection.

Male-to-Male Sexual Transmission of Zika Virus--Texas, January 2016.

Zika virus infection has been linked to increased risk for Guillain-Barré syndrome and adverse fetal outcomes, including congenital microcephaly. In January 2016, after notification from a local health care provider, an investigation by Dallas County Health and Human Services (DCHHS) identified a case of sexual transmission of Zika virus between a man with recent travel to an area of active Zika virus transmission (patient A) and his nontraveling male partner (patient B). At this time, there had been one prior case report of sexual transmission of Zika virus. The present case report indicates Zika virus can be transmitted through anal sex, as well as vaginal sex. Identification and investigation of cases of sexual transmission of Zika virus in nonendemic areas present valuable opportunities to inform recommendations to prevent sexual transmission of Zika virus.

Travel-Associated Zika Virus Disease Cases Among U.S. Residents--United States, January 2015-February 2016.

Zika virus is an emerging mosquito-borne flavivirus. Recent outbreaks of Zika virus disease in the Pacific Islands and the Region of the Americas have identified new modes of transmission and clinical manifestations, including adverse pregnancy outcomes. However, data on the epidemiology and clinical findings of laboratory-confirmed Zika virus disease remain limited. During January 1, 2015-February 26, 2016, a total of 116 residents of 33 U.S. states and the District of Columbia had laboratory evidence of recent Zika virus infection based on testing performed at CDC. Cases include one congenital infection and 115 persons who reported recent travel to areas with active Zika virus transmission (n = 110) or sexual contact with such a traveler (n = 5). All 115 patients had clinical illness, with the most common signs and symptoms being rash (98%; n = 113), fever (82%; 94), and arthralgia (66%; 76). Health care providers should educate patients, particularly pregnant women, about the risks for, and measures to prevent, infection with Zika virus and other mosquito-borne viruses. Zika virus disease should be considered in patients with acute onset of fever, rash, arthralgia, or conjunctivitis, who traveled to areas with ongoing Zika virus transmission (http://www.cdc.gov/zika/geo/index.html) or who had unprotected sex with a person who traveled to one of those areas and developed compatible symptoms within 2 weeks of returning.

Transmission of Zika Virus Through Sexual Contact with Travelers to Areas of Ongoing Transmission - Continental United States, 2016.

Zika virus is a flavivirus closely related to dengue, West Nile, and yellow fever viruses. Although spread is primarily by Aedes species mosquitoes, two instances of sexual transmission of Zika virus have been reported, and replicative virus has been isolated from semen of one man with hematospermia. On February 5, 2016, CDC published recommendations for preventing sexual transmission of Zika virus. Updated prevention guidelines were published on February 23. During February 6-22, 2016, CDC received reports of 14 instances of suspected sexual transmission of Zika virus. Among these, two laboratory-confirmed cases and four probable cases of Zika virus disease have been identified among women whose only known risk factor was sexual contact with a symptomatic male partner with recent travel to an area with ongoing Zika virus transmission. Two instances have been excluded based on additional information, and six others are still under investigation. State, territorial, and local public health departments, clinicians, and the public should be aware of current recommendations for preventing sexual transmission of Zika virus, particularly to pregnant women. Men who reside in or have traveled to an area of ongoing Zika virus transmission and have a pregnant partner should abstain from sexual activity or consistently and correctly use condoms during sex with their pregnant partner for the duration of the pregnancy.

Zika Virus Spreads to New Areas - Region of the Americas, May 2015-January 2016.

Zika virus is a mosquito-borne flavivirus that was first identified in Uganda in 1947 (1). Before 2007, only sporadic human disease cases were reported from countries in Africa and Asia. In 2007, the first documented outbreak of Zika virus disease was reported in Yap State, Federated States of Micronesia; 73% of the population aged ≥3 years is estimated to have been infected (2). Subsequent outbreaks occurred in Southeast Asia and the Western Pacific (3). In May 2015, the World Health Organization reported the first local transmission of Zika virus in the Region of the Americas (Americas), with autochthonous cases identified in Brazil (4). In December, the Ministry of Health estimated that 440,000-1,300,000 suspected cases of Zika virus disease had occurred in Brazil in 2015 (5). By January 20, 2016, locally-transmitted cases had been reported to the Pan American Health Organization from Puerto Rico and 19 other countries or territories in the Americas* (Figure) (6). Further spread to other countries in the region is being monitored closely.

Concurrent Outbreaks of St. Louis Encephalitis Virus and West Nile Virus Disease - Arizona, 2015.

St. Louis encephalitis virus (SLEV) and West Nile virus (WNV) are closely related mosquito-borne flaviviruses that can cause outbreaks of acute febrile illness and neurologic disease. Both viruses are endemic throughout much of the United States and have the same Culex species mosquito vectors and avian hosts (1); however, since WNV was first identified in the United States in 1999, SLEV disease incidence has been substantially lower than WNV disease incidence, and no outbreaks involving the two viruses circulating in the same location at the same time have been identified. Currently, there is a commercially available laboratory test for diagnosis of acute WNV infection, but there is no commercially available SLEV test, and all SLEV testing must be performed at public health laboratories. In addition, because antibodies against SLEV and WNV can cross-react on standard diagnostic tests, confirmatory neutralizing antibody testing at public health laboratories is usually required to determine the flavivirus species (2). This report describes the first known concurrent outbreaks of SLEV and WNV disease in the United States.

Rapid response to Ebola outbreaks in remote areas - Liberia, July-November 2014.

West Africa is experiencing its first epidemic of Ebola virus disease (Ebola). As of February 9, Liberia has reported 8,864 Ebola cases, of which 3,147 were laboratory-confirmed. Beginning in August 2014, the Liberia Ministry of Health and Social Welfare (MOHSW), supported by CDC, the World Health Organization (WHO), and others, began systematically investigating and responding to Ebola outbreaks in remote areas. Because many of these areas lacked mobile telephone service, easy road access, and basic infrastructure, flexible and targeted interventions often were required. Development of a national strategy for the Rapid Isolation and Treatment of Ebola (RITE) began in early October. The strategy focuses on enhancing capacity of county health teams (CHT) to investigate outbreaks in remote areas and lead tailored responses through effective and efficient coordination of technical and operational assistance from the MOHSW central level and international partners. To measure improvements in response indicators and outcomes over time, data from investigations of 12 of 15 outbreaks in remote areas with illness onset dates of index cases during July 16-November 20, 2014, were analyzed. The times to initial outbreak alerts and durations of the outbreaks declined over that period while the proportions of patients who were isolated and treated increased. At the same time, the case-fatality rate in each outbreak declined. Implementation of strategies, such as RITE, to rapidly respond to rural outbreaks of Ebola through coordinated and tailored responses can successfully reduce transmission and improve outcomes.

Impact of virus strain characteristics on early detection of highly pathogenic avian influenza infection in commercial table-egg layer flocks and implications for outbreak control.

Early detection of highly pathogenic avian influenza (HPAI) infection in commercial poultry flocks is a critical component of outbreak control. Reducing the time to detect HPAI infection can reduce the risk of disease transmission to other flocks. The timeliness of different types of detection triggers could be dependent on clinical signs that are first observed in a flock, signs that might vary due to HPAI virus strain characteristics. We developed a stochastic disease transmission model to evaluate how transmission characteristics of various HPAI strains might effect the relative importance of increased mortality, drop in egg production, or daily real-time reverse transcriptase (RRT)-PCR testing, toward detecting HPAI infection in a commercial table-egg layer flock. On average, daily RRT-PCR testing resulted in the shortest time to detection (from 3.5 to 6.1 days) depending on the HPAI virus strain and was less variable over a range of transmission parameters compared with other triggers evaluated. Our results indicate that a trigger to detect a drop in egg production would be useful for HPAI virus strains with long infectious periods (6-8 days) and including an egg-drop detection trigger in emergency response plans would lead to earlier and consistent reporting in some cases. We discuss implications for outbreak control and risk of HPAI spread attributed to different HPAI strain characteristics where an increase in mortality or a drop in egg production or both would be among the first clinical signs observed in an infected flock.

The impact of holding time on the likelihood of moving internally contaminated eggs from a highly pathogenic avian influenza infected but undetected commercial table-egg layer flock.

Emergency response during a highly pathogenic avian influenza (HPAI) outbreak may involve quarantine and movement controls for poultry products such as eggs. However, such disease control measures may disrupt business continuity and impact food security, since egg production facilities often do not have sufficient capacity to store eggs for prolonged periods. We propose the incorporation of a holding time before egg movement in conjunction with targeted active surveillance as a novel approach to move eggs from flocks within a control area with a low likelihood of them being contaminated with HPAI virus. Holding time reduces the likelihood of HPAI-contaminated eggs being moved from a farm before HPAI infection is detected in the flock. We used a stochastic disease transmission model to estimate the HPAI disease prevalence, disease mortality, and fraction of internally contaminated eggs at various time points postinfection of a commercial table-egg layer flock. The transmission model results were then used in a simulation model of a targeted matrix gene real-time reverse transcriptase (RRT)-PCR testing based surveillance protocol to estimate the time to detection and the number of contaminated eggs moved under different holding times. Our simulation results indicate a significant reduction in the number of internally contaminated eggs moved from an HPAI-infected undetected flock with each additional day of holding time. Incorporation of a holding time and the use of targeted surveillance have been adopted by the U.S. Department of Agriculture in their Draft Secure Egg Supply Plan for movement of egg industry products during an HPAI outbreak.

Demeter's Resilience: an International Food Defense exercise.

The National Center for Food Protection and Defense (NCFPD), which is led by the University of Minnesota, hosted an international food defense exercise on 27 to 29 May 2008. Established in 2004, NCFPD is a Department of Homeland Security Center of Excellence with the mission of defending the food system through research and education. Tabletop exercises are practice-based scenarios intended to mimic real life experiences. The objective of the exercise discussed in this article was to facilitate discussion to increase awareness among exercise participants of both the threat that would be posed by an intentional attack on the food supply and the international impact of such an attack. Through facilitated discussion, exercise participants agreed on the following themes: (i) recognition of a foodborne disease outbreak is driven by the characteristics of the illness rather than the actual number of ill individuals; (ii) during the course of a foodborne outbreak there are generally multiple levels of communication; (iii) a common case definition for a foodborne disease is difficult to develop on a global scale; and (iv) the safety and health of all individuals is the number one priority of all parties involved. Several challenges were faced during the development of the exercise, but these were overcome to produce a more robust exercise. The following discussion will provide an overview of the challenges and the strategies used to overcome them. The lessons learned provide insight into how to plan, prepare, and host an international food defense exercise.

Supporting business continuity during a highly pathogenic avian influenza outbreak: a collaboration of industry, academia, and government.

Since 2006, a collaborative group of egg industry, state, federal, and academia representatives have worked to enhance preparedness in highly pathogenic avian influenza (HPAI) planning. The collaborative group has created a draft egg product movement protocol, which calls for realistic, science-based contingency plans, biosecurity assessments, commodity risk assessments, and real-time reverse transcriptase-PCR testing to support the continuity of egg operations while also preventing and eradicating an HPAI outbreak. The work done by this group serves as an example of how industry, government, and academia can work together to achieve better preparedness in the event of an animal health emergency. In addition, in the event of an HPAI outbreak in domestic poultry, U.S. consumers will be assured that their egg products come from healthy chickens.

Cluster of sylvatic epidemic typhus cases associated with flying squirrels, 2004-2006.

In February 2006, a diagnosis of sylvatic epidemic typhus in a counselor at a wilderness camp in Pennsylvania prompted a retrospective investigation. From January 2004 through January 2006, 3 more cases were identified. All had been counselors at the camp and had experienced febrile illness with myalgia, chills, and sweats; 2 had been hospitalized. All patients had slept in the same cabin and reported having seen and heard flying squirrels inside the wall adjacent to their bed. Serum from each patient had evidence of infection with Rickettsia prowazekii. Analysis of blood and tissue from 14 southern flying squirrels trapped in the woodlands around the cabin indicated that 71% were infected with R. prowazekii. Education and control measures to exclude flying squirrels from housing are essential to reduce the likelihood of sylvatic epidemic typhus.