PubTransformer

A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

Julie Villanueva - Top 30 Publications

Zika Virus -10 Public Health Achievements in 2016 and Future Priorities.

The introduction of Zika virus into the Region of the Americas (Americas) and the subsequent increase in cases of congenital microcephaly resulted in activation of CDC's Emergency Operations Center on January 22, 2016, to ensure a coordinated response and timely dissemination of information, and led the World Health Organization to declare a Public Health Emergency of International Concern on February 1, 2016. During the past year, public health agencies and researchers worldwide have collaborated to protect pregnant women, inform clinicians and the public, and advance knowledge about Zika virus (Figure 1). This report summarizes 10 important contributions toward addressing the threat posed by Zika virus in 2016. To protect pregnant women and their fetuses and infants from the effects of Zika virus infection during pregnancy, public health activities must focus on preventing mosquito-borne transmission through vector control and personal protective practices, preventing sexual transmission by advising abstention from sex or consistent and correct use of condoms, and preventing unintended pregnancies by reducing barriers to access to highly effective reversible contraception.

Update: Interim Guidance for Health Care Providers Caring for Pregnant Women with Possible Zika Virus Exposure - United States, July 2016.

CDC has updated its interim guidance for U.S. health care providers caring for pregnant women with possible Zika virus exposure, to include the emerging data indicating that Zika virus RNA can be detected for prolonged periods in some pregnant women. To increase the proportion of pregnant women with Zika virus infection who receive a definitive diagnosis, CDC recommends expanding real-time reverse transcription-polymerase chain reaction (rRT-PCR) testing. Possible exposures to Zika virus include travel to or residence in an area with active Zika virus transmission, or sex* with a partner who has traveled to or resides in an area with active Zika virus transmission without using condoms or other barrier methods to prevent infection.(†) Testing recommendations for pregnant women with possible Zika virus exposure who report clinical illness consistent with Zika virus disease(§) (symptomatic pregnant women) are the same, regardless of their level of exposure (i.e., women with ongoing risk for possible exposure, including residence in or frequent travel to an area with active Zika virus transmission, as well as women living in areas without Zika virus transmission who travel to an area with active Zika virus transmission, or have unprotected sex with a partner who traveled to or resides in an area with active Zika virus transmission). Symptomatic pregnant women who are evaluated <2 weeks after symptom onset should receive serum and urine Zika virus rRT-PCR testing. Symptomatic pregnant women who are evaluated 2-12 weeks after symptom onset should first receive a Zika virus immunoglobulin (IgM) antibody test; if the IgM antibody test result is positive or equivocal, serum and urine rRT-PCR testing should be performed. Testing recommendations for pregnant women with possible Zika virus exposure who do not report clinical illness consistent with Zika virus disease (asymptomatic pregnant women) differ based on the circumstances of possible exposure. For asymptomatic pregnant women who live in areas without active Zika virus transmission and who are evaluated <2 weeks after last possible exposure, rRT-PCR testing should be performed. If the rRT-PCR result is negative, a Zika virus IgM antibody test should be performed 2-12 weeks after the exposure. Asymptomatic pregnant women who do not live in an area with active Zika virus transmission, who are first evaluated 2-12 weeks after their last possible exposure should first receive a Zika virus IgM antibody test; if the IgM antibody test result is positive or equivocal, serum and urine rRT-PCR should be performed. Asymptomatic pregnant women with ongoing risk for exposure to Zika virus should receive Zika virus IgM antibody testing as part of routine obstetric care during the first and second trimesters; immediate rRT-PCR testing should be performed when IgM antibody test results are positive or equivocal. This guidance also provides updated recommendations for the clinical management of pregnant women with confirmed or possible Zika virus infection. These recommendations will be updated when additional data become available.

Maternal immunisation with trivalent inactivated influenza vaccine for prevention of influenza in infants in Mali: a prospective, active-controlled, observer-blind, randomised phase 4 trial.

Despite the heightened risk of serious influenza during infancy, vaccination is not recommended in infants younger than 6 months. We aimed to assess the safety, immunogenicity, and efficacy of maternal immunisation with trivalent inactivated influenza vaccine for protection of infants against a first episode of laboratory-confirmed influenza.

Interim Guidance for Interpretation of Zika Virus Antibody Test Results.

Zika virus is a single-stranded RNA virus in the genus Flavivirus and is closely related to dengue, West Nile, Japanese encephalitis, and yellow fever viruses (1,2). Among flaviviruses, Zika and dengue virus share similar symptoms of infection, transmission cycles, and geographic distribution. Diagnostic testing for Zika virus infection can be accomplished using both molecular and serologic methods. For persons with suspected Zika virus disease, a positive real-time reverse transcription-polymerase chain reaction (rRT-PCR) result confirms Zika virus infection, but a negative rRT-PCR result does not exclude infection (3-7). In these cases, immunoglobulin (Ig) M and neutralizing antibody testing can identify additional recent Zika virus infections (6,7). However, Zika virus antibody test results can be difficult to interpret because of cross-reactivity with other flaviviruses, which can preclude identification of the specific infecting virus, especially when the person previously was infected with or vaccinated against a related flavivirus (8). This is important because the results of Zika and dengue virus testing will guide clinical management. Pregnant women with laboratory evidence of Zika virus infection should be evaluated and managed for possible adverse pregnancy outcomes and be reported to the U.S. Zika Pregnancy Registry or the Puerto Rico Zika Active Pregnancy Surveillance System for clinical follow-up (9,10). All patients with clinically suspected dengue should have proper management to reduce the risk for hemorrhage and shock (11). If serologic testing indicates recent flavivirus infection that could be caused by either Zika or dengue virus, patients should be clinically managed for both infections because they might have been infected with either virus.

Update: Interim Guidance for Health Care Providers Caring for Women of Reproductive Age with Possible Zika Virus Exposure--United States, 2016.

CDC has updated its interim guidance for U.S. health care providers caring for women of reproductive age with possible Zika virus exposure to include recommendations on counseling women and men with possible Zika virus exposure who are interested in conceiving. This guidance is based on limited available data on persistence of Zika virus RNA in blood and semen. Women who have Zika virus disease should wait at least 8 weeks after symptom onset to attempt conception, and men with Zika virus disease should wait at least 6 months after symptom onset to attempt conception. Women and men with possible exposure to Zika virus but without clinical illness consistent with Zika virus disease should wait at least 8 weeks after exposure to attempt conception. Possible exposure to Zika virus is defined as travel to or residence in an area of active Zika virus transmission ( http://www.cdc.gov/zika/geo/active-countries.html), or sex (vaginal intercourse, anal intercourse, or fellatio) without a condom with a man who traveled to or resided in an area of active transmission. Women and men who reside in areas of active Zika virus transmission should talk with their health care provider about attempting conception. This guidance also provides updated recommendations on testing of pregnant women with possible Zika virus exposure. These recommendations will be updated when additional data become available.

Zika Virus Disease: A CDC Update for Pediatric Health Care Providers.

Zika virus is a mosquito-borne flavivirus discovered in Africa in 1947. Most persons with Zika virus infection are asymptomatic; symptoms when present are generally mild and include fever, maculopapular rash, arthralgia, and conjunctivitis. Since early 2015, Zika virus has spread rapidly through the Americas, with local transmission identified in 31 countries and territories as of February 29, 2016, including several US territories. All age groups are susceptible to Zika virus infection, including children. Maternal-fetal transmission of Zika virus has been documented; evidence suggests that congenital Zika virus infection is associated with microcephaly and other adverse pregnancy and infant outcomes. Perinatal transmission has been reported in 2 cases; 1 was asymptomatic, and the other had thrombocytopenia and a rash. Based on limited information, Zika virus infection in children is mild, similar to that in adults. The long-term sequelae of congenital, perinatal, and pediatric Zika virus infection are largely unknown. No vaccine to prevent Zika virus infection is available, and treatment is supportive. The primary means of preventing Zika virus infection is prevention of mosquito bites in areas with local Zika virus transmission. Given the possibility of limited local transmission of Zika virus in the continental United States and frequent travel from affected countries to the United States, US pediatric health care providers need to be familiar with Zika virus infection. This article reviews the Zika virus, its epidemiologic characteristics, clinical presentation, laboratory testing, treatment, and prevention to assist providers in the evaluation and management of children with possible Zika virus infection.

Update: Interim Guidelines for Health Care Providers Caring for Infants and Children with Possible Zika Virus Infection--United States, February 2016.

CDC has updated its interim guidelines for U.S. health care providers caring for infants born to mothers who traveled to or resided in areas with Zika virus transmission during pregnancy and expanded guidelines to include infants and children with possible acute Zika virus disease. This update contains a new recommendation for routine care for infants born to mothers who traveled to or resided in areas with Zika virus transmission during pregnancy but did not receive Zika virus testing, when the infant has a normal head circumference, normal prenatal and postnatal ultrasounds (if performed), and normal physical examination. Acute Zika virus disease should be suspected in an infant or child aged <18 years who 1) traveled to or resided in an affected area within the past 2 weeks and 2) has ≥2 of the following manifestations: fever, rash, conjunctivitis, or arthralgia. Because maternal-infant transmission of Zika virus during delivery is possible, acute Zika virus disease should also be suspected in an infant during the first 2 weeks of life 1) whose mother traveled to or resided in an affected area within 2 weeks of delivery and 2) who has ≥2 of the following manifestations: fever, rash, conjunctivitis, or arthralgia. Evidence suggests that Zika virus illness in children is usually mild. As an arboviral disease, Zika virus disease is nationally notifiable. Health care providers should report suspected cases of Zika virus disease to their local, state, or territorial health departments to arrange testing and so that action can be taken to reduce the risk for local Zika virus transmission. As new information becomes available, these guidelines will be updated: http://www.cdc.gov/zika/.

Update: Interim Guidelines for Health Care Providers Caring for Pregnant Women and Women of Reproductive Age with Possible Zika Virus Exposure - United States, 2016.

CDC has updated its interim guidelines for U.S. health care providers caring for pregnant women during a Zika virus outbreak (1). Updated guidelines include a new recommendation to offer serologic testing to asymptomatic pregnant women (women who do not report clinical illness consistent with Zika virus disease) who have traveled to areas with ongoing Zika virus transmission. Testing can be offered 2-12 weeks after pregnant women return from travel. This update also expands guidance to women who reside in areas with ongoing Zika virus transmission, and includes recommendations for screening, testing, and management of pregnant women and recommendations for counseling women of reproductive age (15-44 years). Pregnant women who reside in areas with ongoing Zika virus transmission have an ongoing risk for infection throughout their pregnancy. For pregnant women with clinical illness consistent with Zika virus disease,* testing is recommended during the first week of illness. For asymptomatic pregnant women residing in areas with ongoing Zika virus transmission, testing is recommended at the initiation of prenatal care with follow-up testing mid-second trimester. Local health officials should determine when to implement testing of asymptomatic pregnant women based on information about levels of Zika virus transmission and laboratory capacity. Health care providers should discuss reproductive life plans, including pregnancy intention and timing, with women of reproductive age in the context of the potential risks associated with Zika virus infection.

Generation and Characterization of Live Attenuated Influenza A(H7N9) Candidate Vaccine Virus Based on Russian Donor of Attenuation.

Avian influenza A (H7N9) virus has emerged recently and continues to cause severe disease with a high mortality rate in humans prompting the development of candidate vaccine viruses. Live attenuated influenza vaccines (LAIV) are 6:2 reassortant viruses containing the HA and NA gene segments from wild type influenza viruses to induce protective immune responses and the six internal genes from Master Donor Viruses (MDV) to provide temperature sensitive, cold-adapted and attenuated phenotypes.

Detection and Characterization of Clade 1 Reassortant H5N1 Viruses Isolated from Human Cases in Vietnam during 2013.

Highly pathogenic avian influenza (HPAI) H5N1 is endemic in Vietnamese poultry and has caused sporadic human infection in Vietnam since 2003. Human infections with HPAI H5N1 are of concern due to a high mortality rate and the potential for the emergence of pandemic viruses with sustained human-to-human transmission. Viruses isolated from humans in southern Vietnam have been classified as clade 1 with a single genome constellation (VN3) since their earliest detection in 2003. This is consistent with detection of this clade/genotype in poultry viruses endemic to the Mekong River Delta and surrounding regions. Comparison of H5N1 viruses detected in humans from southern Vietnamese provinces during 2012 and 2013 revealed the emergence of a 2013 reassortant virus with clade 1.1.2 hemagglutinin (HA) and neuraminidase (NA) surface protein genes but internal genes derived from clade 2.3.2.1a viruses (A/Hubei/1/2010-like; VN12). Closer analysis revealed mutations in multiple genes of this novel genotype (referred to as VN49) previously associated with increased virulence in animal models and other markers of adaptation to mammalian hosts. Despite the changes identified between the 2012 and 2013 genotypes analyzed, their virulence in a ferret model was similar. Antigenically, the 2013 viruses were less cross-reactive with ferret antiserum produced to the clade 1 progenitor virus, A/Vietnam/1203/2004, but reacted with antiserum produced against a new clade 1.1.2 WHO candidate vaccine virus (A/Cambodia/W0526301/2012) with comparable hemagglutination inhibition titers as the homologous antigen. Together, these results indicate changes to both surface and internal protein genes of H5N1 viruses circulating in southern Vietnam compared to 2012 and earlier viruses.

Identification of Influenza A/PR/8/34 Donor Viruses Imparting High Hemagglutinin Yields to Candidate Vaccine Viruses in Eggs.

One of the important lessons learned from the 2009 H1N1 pandemic is that a high yield influenza vaccine virus is essential for efficient and timely production of pandemic vaccines in eggs. The current seasonal and pre-pandemic vaccine viruses are generated either by classical reassortment or reverse genetics. Both approaches utilize a high growth virus, generally A/Puerto Rico/8/1934 (PR8), as the donor of all or most of the internal genes, and the wild type virus recommended for inclusion in the vaccine to contribute the hemagglutinin (HA) and neuraminidase (NA) genes encoding the surface glycoproteins. As a result of extensive adaptation through sequential egg passaging, PR8 viruses with different gene sequences and high growth properties have been selected at different laboratories in past decades. The effect of these related but distinct internal PR8 genes on the growth of vaccine viruses in eggs has not been examined previously. Here, we use reverse genetics to analyze systematically the growth and HA antigen yield of reassortant viruses with 3 different PR8 backbones. A panel of 9 different HA/NA gene pairs in combination with each of the 3 different lineages of PR8 internal genes (27 reassortant viruses) was generated to evaluate their performance. Virus and HA yield assays showed that the PR8 internal genes influence HA yields in most subtypes. Although no single PR8 internal gene set outperformed the others in all candidate vaccine viruses, a combination of specific PR8 backbone with individual HA/NA pairs demonstrated improved HA yield and consequently the speed of vaccine production. These findings may be important both for production of seasonal vaccines and for a rapid global vaccine response during a pandemic.

Development of influenza A(H7N9) candidate vaccine viruses with improved hemagglutinin antigen yield in eggs.

The emergence of avian influenza A(H7N9) virus in poultry causing zoonotic human infections was reported on March 31, 2013. Development of A(H7N9) candidate vaccine viruses (CVV) for pandemic preparedness purposes was initiated without delay. Candidate vaccine viruses were derived by reverse genetics using the internal genes of A/Puerto/Rico/8/34 (PR8). The resulting A(H7N9) CVVs needed improvement because they had titers and antigen yields that were suboptimal for vaccine manufacturing in eggs, especially in a pandemic situation.

Update: Influenza activity--United States, September 28, 2014-February 21, 2015.

Influenza activity in the United States began to increase in mid-November, remained elevated through February 21, 2015, and is expected to continue for several more weeks. To date, influenza A (H3N2) viruses have predominated overall. As has been observed in previous seasons during which influenza A (H3N2) viruses predominated, adults aged ≥65 years have been most severely affected. The cumulative laboratory-confirmed influenza-associated hospitalization rate among adults aged ≥65 years is the highest recorded since this type of surveillance began in 2005. This age group also accounts for the majority of deaths attributed to pneumonia and influenza. The majority of circulating influenza A (H3N2) viruses are different from the influenza A (H3N2) component of the 2014-15 Northern Hemisphere seasonal vaccines, and the predominance of these antigenically and genetically drifted viruses has resulted in reduced vaccine effectiveness. This report summarizes U.S. influenza activity* since September 28, 2014, and updates the previous summary.

Neuraminidase Mutations Conferring Resistance to Oseltamivir in Influenza A(H7N9) Viruses.

Human infections by avian influenza A(H7N9) virus entail substantial morbidity and mortality. Treatment of infected patients with the neuraminidase (NA) inhibitor oseltamivir was associated with emergence of viruses carrying NA substitutions. In the NA inhibition (NI) assay, R292K conferred highly reduced inhibition by oseltamivir, while E119V and I222K each caused reduced inhibition. To facilitate establishment of laboratory correlates of clinically relevant resistance, experiments were conducted in ferrets infected with virus carrying wild-type or variant NA genes recovered from the A/Taiwan/1/2013 isolate. Oseltamivir treatment (5 or 25 mg/kg of body weight/dose) was given 4 h postinfection, followed by twice-daily treatment for 5 days. Treatment of ferrets infected with wild-type virus resulted in a modest dose-dependent reduction (0.7 to 1.5 log10 50% tissue culture infectious dose [TCID50]) in nasal wash viral titers and inflammation response. Conversely, treatment failed to significantly inhibit the replication of R292K or E119V virus. A small reduction of viral titers was detected on day 5 in ferrets infected with the I222K virus. The propensity for oseltamivir resistance emergence was assessed in oseltamivir-treated animals infected with wild-type virus; emergence of R292K virus was detected in 3 of 6 ferrets within 5 to 7 days postinfection. Collectively, we demonstrate that R292K, E119V, and I222K reduced the inhibitory activity of oseltamivir, not only in the NI assay, but also in infected ferrets, judged particularly by viral loads in nasal washes, and may signal the need for alternative therapeutics. Thus, these clinical outcomes measured in the ferret model may correlate with clinically relevant oseltamivir resistance in humans.

Structure and receptor binding preferences of recombinant hemagglutinins from avian and human H6 and H10 influenza A virus subtypes.

During 2013, three new avian influenza A virus subtypes, A(H7N9), A(H6N1), and A(H10N8), resulted in human infections. While the A(H7N9) virus resulted in a significant epidemic in China across 19 provinces and municipalities, both A(H6N1) and A(H10N8) viruses resulted in only a few human infections. This study focuses on the major surface glycoprotein hemagglutinins from both of these novel human viruses. The detailed structural and glycan microarray analyses presented here highlight the idea that both A(H6N1) and A(H10N8) virus hemagglutinins retain a strong avian receptor binding preference and thus currently pose a low risk for sustained human infections.

Structural characterization of a protective epitope spanning A(H1N1)pdm09 influenza virus neuraminidase monomers.

A(H1N1)pdm09 influenza A viruses predominated in the 2013-2014 USA influenza season, and although most of these viruses remain sensitive to Food and Drug Administration-approved neuraminidase (NA) inhibitors, alternative therapies are needed. Here we show that monoclonal antibody CD6, selected for binding to the NA of the prototypic A(H1N1)pdm09 virus, A/California/07/2009, protects mice against lethal virus challenge. The crystal structure of NA in complex with CD6 Fab reveals a unique epitope, where the heavy-chain complementarity determining regions (HCDRs) 1 and 2 bind one NA monomer, the light-chain CDR2 binds the neighbouring monomer, whereas HCDR3 interacts with both monomers. This 30-amino-acid epitope spans the lateral face of an NA dimer and is conserved among circulating A(H1N1)pdm09 viruses. These results suggest that the large, lateral CD6 epitope may be an effective target of antibodies selected for development as therapeutic agents against circulating H1N1 influenza viruses.

Application of a seven-target pyrosequencing assay to improve the detection of neuraminidase inhibitor-resistant Influenza A(H3N2) viruses.

National U.S. influenza antiviral surveillance incorporates data generated by neuraminidase (NA) inhibition (NI) testing of isolates supplemented with NA sequence analysis and pyrosequencing analysis of clinical specimens. A lack of established correlates for clinically relevant resistance to NA inhibitors (NAIs) hinders interpretation of NI assay data. Nonetheless, A(H3N2) viruses are commonly monitored for moderately or highly reduced inhibition in the NI assay and/or for the presence of NA markers E119V, R292K, and N294S. In 2012 to 2013, three drug-resistant A(H3N2) viruses were detected by NI assay among isolates (n = 1,424); all showed highly reduced inhibition by oseltamivir and had E119V. In addition, one R292K variant was detected among clinical samples (n = 1,024) by a 3-target pyrosequencing assay. Overall, the frequency of NAI resistance was low (0.16% [4 of 2,448]). To screen for additional NA markers previously identified in viruses from NAI-treated patients, the pyrosequencing assay was modified to include Q136K, I222V, and deletions encompassing residues 245 to 248 (del245-248) and residues 247 to 250 (del247-250). The 7-target pyrosequencing assay detected NA variants carrying E119V, Q136, and del245-248 in an isolate from an oseltamivir-treated patient. Next, this assay was applied to clinical specimens collected from hospitalized patients and submitted for NI testing but failed cell culture propagation. Of the 27 clinical specimens tested, 4 (15%) contained NA changes: R292K (n = 2), E119V (n = 1), and del247-250 (n = 1). Recombinant NAs with del247-250 or del245-248 conferred highly reduced inhibition by oseltamivir, reduced inhibition by zanamivir, and normal inhibition by peramivir and laninamivir. Our results demonstrated the benefits of the 7-target pyrosequencing assay in conducting A(H3N2) antiviral surveillance and testing for clinical care.

Structure and receptor binding preferences of recombinant human A(H3N2) virus hemagglutinins.

A(H3N2) influenza viruses have circulated in humans since 1968, and antigenic drift of the hemagglutinin (HA) protein continues to be a driving force that allows the virus to escape the human immune response. Since the major antigenic sites of the HA overlap into the receptor binding site (RBS) of the molecule, the virus constantly struggles to effectively adapt to host immune responses, without compromising its functionality. Here, we have structurally assessed the evolution of the A(H3N2) virus HA RBS, using an established recombinant expression system. Glycan binding specificities of nineteen A(H3N2) influenza virus HAs, each a component of the seasonal influenza vaccine between 1968 and 2012, were analyzed. Results suggest that while its receptor-binding site has evolved from one that can bind a broad range of human receptor analogs to one with a more restricted binding profile for longer glycans, the virus continues to circulate and transmit efficiently among humans.

Structural and functional analysis of surface proteins from an A(H3N8) influenza virus isolated from New England harbor seals.

In late 2011, an A(H3N8) influenza virus infection resulted in the deaths of 162 New England harbor seals. Virus sequence analysis and virus receptor binding studies highlighted potential markers responsible for mammalian adaptation and a mixed receptor binding preference (S. J. Anthony, J. A. St Leger, K. Pugliares, H. S. Ip, J. M. Chan, Z. W. Carpenter, I. Navarrete-Macias, M. Sanchez-Leon, J. T. Saliki, J. Pedersen, W. Karesh, P. Daszak, R. Rabadan, T. Rowles, W. I. Lipkin, MBio 3:e00166-00112, 2012, http://dx.doi.org/10.1128/mBio.00166-12). Here, we present a detailed structural and biochemical analysis of the surface antigens of the virus. Results obtained with recombinant proteins for both the hemagglutinin and neuraminidase indicate a true avian receptor binding preference. Although the detection of this virus in new species highlights an increased potential for cross-species transmission, our results indicate that the A(H3N8) virus currently poses a low risk to humans.

Oseltamivir-resistant influenza A(H1N1)pdm09 viruses, United States, 2013-14.

We report characteristics of oseltamivir-resistant influenza A(H1N1)pdm09 viruses and patients infected with these viruses in the United States. During 2013-14, fifty-nine (1.2%) of 4,968 analyzed US influenza A(H1N1)pdm09 viruses had the H275Y oseltamivir resistance-conferring neuraminidase substitution. Our results emphasize the need for local surveillance for neuraminidase inhibitor susceptibility among circulating influenza viruses.

Update: influenza activity - United States, September 28- December 6, 2014.

CDC collects, compiles, and analyzes data on influenza activity year-round in the United States (http://www.cdc.gov/flu/weekly/fluactivitysurv.htm). The influenza season generally begins in the fall and continues through the winter and spring months; however, the timing and severity of circulating influenza viruses can vary by geographic location and season. Influenza activity in the United States increased starting mid-October through December. This report summarizes U.S. influenza activity during September 28-December 6, 2014.

Use of highly pathogenic avian influenza A(H5N1) gain-of-function studies for molecular-based surveillance and pandemic preparedness.

Update: influenza activity -- United States and worldwide, May 18-September 20, 2014.

During May 18-September 20, 2014, the United States experienced low levels of seasonal influenza activity overall. Influenza A (H1N1)pdm09 (pH1N1), influenza A (H3N2), and influenza B viruses were detected worldwide and were identified sporadically in the United States. In August, two influenza A (H3N2) variant viruses (H3N2v) were detected in Ohio. This report summarizes influenza activity in the United States and worldwide during May 18-September 20, 2014.

Identification of molecular markers associated with alteration of receptor-binding specificity in a novel genotype of highly pathogenic avian influenza A(H5N1) viruses detected in Cambodia in 2013.

Human infections with influenza A(H5N1) virus in Cambodia increased sharply during 2013. Molecular characterization of viruses detected in clinical specimens from human cases revealed the presence of mutations associated with the alteration of receptor-binding specificity (K189R, Q222L) and respiratory droplet transmission in ferrets (N220K with Q222L). Discovery of quasispecies at position 222 (Q/L), in addition to the absence of the mutations in poultry/environmental samples, suggested that the mutations occurred during human infection and did not transmit further.

Characterization of drug-resistant influenza A(H7N9) variants isolated from an oseltamivir-treated patient in Taiwan.

Patients contracting influenza A(H7N9) infection often developed severe disease causing respiratory failure. Neuraminidase (NA) inhibitors (NAIs) are the primary option for treatment, but information on drug-resistance markers for influenza A(H7N9) is limited.

Influenza activity - United States, 2013-14 season and composition of the 2014-15 influenza vaccines.

During the 2013-14 influenza season in the United States, influenza activity increased through November and December before peaking in late December. Influenza A (H1N1)pdm09 (pH1N1) viruses predominated overall, but influenza B viruses and, to a lesser extent, influenza A (H3N2) viruses also were reported in the United States. This influenza season was the first since the 2009 pH1N1 pandemic in which pH1N1 viruses predominated and was characterized overall by lower levels of outpatient illness and mortality than influenza A (H3N2)-predominant seasons, but higher rates of hospitalization among adults aged 50-64 years compared with recent years. This report summarizes influenza activity in the United States for the 2013-14 influenza season (September 29, 2013-May 17, 2014†) and reports recommendations for the components of the 2014-15 Northern Hemisphere influenza vaccines.

Rapid strategy for screening by pyrosequencing of influenza virus reassortants--candidates for live attenuated vaccines.

Live attenuated influenza vaccine viruses (LAIVs) can be generated by classical reassortment of gene segments between a cold adapted, temperature sensitive and attenuated Master Donor Virus (MDV) and a seasonal wild-type (wt) virus. The vaccine candidates contain hemagglutinin (HA) and neuraminidase (NA) genes derived from the circulating wt viruses and the remaining six genes derived from the MDV strains. Rapid, efficient selection of the viruses with 6∶2 genome compositions from the large number of genetically different viruses generated during reassortment is essential for the biannual production schedule of vaccine viruses.

An investigational antiviral drug, DAS181, effectively inhibits replication of zoonotic influenza A virus subtype H7N9 and protects mice from lethality.

Human infections caused by avian influenza A virus type subtype H7N9 have been associated with substantial morbidity and mortality. Emergence of virus variants carrying markers of decreased susceptibility to neuraminidase inhibitors was reported. Here we show that DAS181 (Fludase), an antiviral drug with sialidase activity, potently inhibited replication of wild-type influenza A(H7N9) and its oseltamivir-resistant R292K variants in mice. A once-daily administration initiated early after lethal infection hampered body weight loss and completely protected mice from lethality. We observed a time-dependent effect for 24-72-hour delayed DAS181 treatments on morbidity and mortality. The results warrant further investigation of DAS181 for influenza treatment.

Update: influenza activity - United States, September 29, 2013-February 8, 2014.

Influenza activity in the United States began to increase in mid-November and remained elevated through February 8, 2014. During that time, influenza A (H1N1)pdm09 (pH1N1) viruses predominated overall, while few B and A (H3N2) viruses were detected. This report summarizes U.S. influenza activity* during September 29, 2013-February 8, 2014, and updates the previous summary.

Structural stability of influenza A(H1N1)pdm09 virus hemagglutinins.

The noncovalent interactions that mediate trimerization of the influenza hemagglutinin (HA) are important determinants of its biological activities. Recent studies have demonstrated that mutations in the HA trimer interface affect the thermal and pH sensitivities of HA, suggesting a possible impact on vaccine stability (). We used size exclusion chromatography analysis of recombinant HA ectodomain to compare the differences among recombinant trimeric HA proteins from early 2009 pandemic H1N1 viruses, which dissociate to monomers, with those of more recent virus HAs that can be expressed as trimers. We analyzed differences among the HA sequences and identified intermolecular interactions mediated by the residue at position 374 (HA0 numbering) of the HA2 subdomain as critical for HA trimer stability. Crystallographic analyses of HA from the recent H1N1 virus A/Washington/5/2011 highlight the structural basis for this observed phenotype. It remains to be seen whether more recent viruses with this mutation will yield more stable vaccines in the future.