PubTransformer

A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

J Erin Staples - Top 30 Publications

Investigation of Acute Flaccid Paralysis Reported with La Crosse Virus Infection, Ohio, USA, 2008-2014.

Infection with La Crosse virus can cause meningoencephalitis, but it is not known to cause acute flaccid paralysis (AFP). During 2008-2014, nine confirmed or probable La Crosse virus disease cases with possible AFP were reported in Ohio, USA. After an epidemiologic and clinical investigation, we determined no patients truly had AFP.

Ability to serologically confirm recent Zika virus infection in areas with varying past incidence of dengue virus infection - United States and territories, 2016.

Background. Cross-reactivity within flavivirus antibody assays, produced by shared epitopes in the envelope proteins, can complicate serological diagnosis of Zika virus (ZIKAV) infection. We assessed the utility of the plaque reduction neutralization test (PRNT) to confirm recent ZIKAV infections and rule out misleading positive IgM results in areas with varying past dengue virus (DENV) infection incidence. Methods. We reviewed PRNT results of sera collected for diagnosis of ZIKAV infection from January 1 through August 31, 2016 with positive ZIKAV IgM results and ZIKAV and DENV PRNT performed. PRNT result interpretations included ZIKAV, unspecified flavivirus, DENV infection, or negative. For this analysis, ZIKAV IgM was considered false-positive for samples interpreted as DENV infection or negative. Results. In US states, 208 (27%) of 759 IgM positives were confirmed as ZIKAV, compared to 11 (21%) of 52 in the US Virgin Islands (USVI), 15 (15%) of 103 in American Samoa, and 13 (11%) of 123 in Puerto Rico. In American Samoa and Puerto Rico, more than 80% of IgM positives were unspecified flavivirus infections. The false-positivity rate was 27% in US states, 18% in USVI, 2% in American Samoa, and 6% in Puerto Rico. Conclusions. In US states, PRNT provided a virus-specific diagnosis or ruled out infection in the majority of IgM positive samples. Almost a third of ZIKAV IgM positive results did not confirm; therefore, providers and patients must understand that IgM results are preliminary. In territories with historically higher DENV transmission, PRNT usually could not differentiate between ZIKAV and DENV infections.

Update: Interim Guidance for the Diagnosis, Evaluation, and Management of Infants with Possible Congenital Zika Virus Infection - United States, October 2017.

CDC has updated its interim guidance for U.S. health care providers caring for infants with possible congenital Zika virus infection (1) in response to recently published updated guidance for health care providers caring for pregnant women with possible Zika virus exposure (2), unknown sensitivity and specificity of currently available diagnostic tests for congenital Zika virus infection, and recognition of additional clinical findings associated with congenital Zika virus infection. All infants born to mothers with possible Zika virus exposure* during pregnancy should receive a standard evaluation at birth and at each subsequent well-child visit including a comprehensive physical examination, age-appropriate vision screening and developmental monitoring and screening using validated tools (3-5), and newborn hearing screen at birth, preferably using auditory brainstem response (ABR) methodology (6). Specific guidance for laboratory testing and clinical evaluation are provided for three clinical scenarios in the setting of possible maternal Zika virus exposure: 1) infants with clinical findings consistent with congenital Zika syndrome regardless of maternal testing results, 2) infants without clinical findings consistent with congenital Zika syndrome who were born to mothers with laboratory evidence of possible Zika virus infection,(†) and 3) infants without clinical findings consistent with congenital Zika syndrome who were born to mothers without laboratory evidence of possible Zika virus infection. Infants in the first two scenarios should receive further testing and evaluation for Zika virus, whereas for the third group, further testing and clinical evaluation for Zika virus are not recommended. Health care providers should remain alert for abnormal findings (e.g., postnatal-onset microcephaly and eye abnormalities without microcephaly) in infants with possible congenital Zika virus exposure without apparent abnormalities at birth.

Notes from the Field: Fatal Yellow Fever in a Traveler Returning From Peru - New York, 2016.

Increased rates of Guillain-Barré syndrome associated with Zika virus outbreak in the Salvador metropolitan area, Brazil.

In mid-2015, Salvador, Brazil, reported an outbreak of Guillain-Barré syndrome (GBS), coinciding with the introduction and spread of Zika virus (ZIKV). We found that GBS incidence during April-July 2015 among those ≥12 years of age was 5.6 cases/100,000 population/year and increased markedly with increasing age to 14.7 among those ≥60 years of age. We conducted interviews with 41 case-patients and 85 neighborhood controls and found no differences in demographics or exposures prior to GBS-symptom onset. A higher proportion of case-patients (83%) compared to controls (21%) reported an antecedent illness (OR 18.1, CI 6.9-47.5), most commonly characterized by rash, headache, fever, and myalgias, within a median of 8 days prior to GBS onset. Our investigation confirmed an outbreak of GBS, particularly in older adults, that was strongly associated with Zika-like illness and geo-temporally associated with ZIKV transmission, suggesting that ZIKV may result in severe neurologic complications.

What We Are Watching-Top Global Infectious Disease Threats, 2013-2016: An Update from CDC's Global Disease Detection Operations Center.

To better track public health events in areas where the public health system is unable or unwilling to report the event to appropriate public health authorities, agencies can conduct event-based surveillance, which is defined as the organized collection, monitoring, assessment, and interpretation of unstructured information regarding public health events that may represent an acute risk to public health. The US Centers for Disease Control and Prevention's (CDC's) Global Disease Detection Operations Center (GDDOC) was created in 2007 to serve as CDC's platform dedicated to conducting worldwide event-based surveillance, which is now highlighted as part of the "detect" element of the Global Health Security Agenda (GHSA). The GHSA works toward making the world more safe and secure from disease threats through building capacity to better "Prevent, Detect, and Respond" to those threats. The GDDOC monitors approximately 30 to 40 public health events each day. In this article, we describe the top threats to public health monitored during 2012 to 2016: avian influenza, cholera, Ebola virus disease, and the vector-borne diseases yellow fever, chikungunya virus, and Zika virus, with updates to the previously described threats from Middle East respiratory syndrome-coronavirus (MERS-CoV) and poliomyelitis.

Zika Virus Infection in Patient with No Known Risk Factors, Utah, USA, 2016.

In 2016, Zika virus disease developed in a man (patient A) who had no known risk factors beyond caring for a relative who died of this disease (index patient). We investigated the source of infection for patient A by surveying other family contacts, healthcare personnel, and community members, and testing samples for Zika virus. We identified 19 family contacts who had similar exposures to the index patient; 86 healthcare personnel had contact with the index patient, including 57 (66%) who had contact with body fluids. Of 218 community members interviewed, 28 (13%) reported signs/symptoms and 132 (61%) provided a sample. Except for patient A, no other persons tested had laboratory evidence of recent Zika virus infection. Of 5,875 mosquitoes collected, none were known vectors of Zika virus and all were negative for Zika virus. The mechanism of transmission to patient A remains unknown but was likely person-to-person contact with the index patient.

Cost effectiveness of a targeted age-based West Nile virus vaccination program.

West Nile virus (WNV) is the leading cause of domestically-acquired arboviral disease in the United States. Several WNV vaccines are in various stages of development. We estimate the cost-effectiveness of WNV vaccination programs targeting groups at increased risk for severe WNV disease.

Notes from the Field: Powassan Virus Disease in an Infant - Connecticut, 2016.

Persistent Arthralgia Associated with Chikungunya Virus Outbreak, US Virgin Islands, December 2014-February 2016.

After the 2014-2015 outbreak of chikungunya virus in the US Virgin Islands, we compared the prevalence of persistent arthralgia among case-patients and controls. Prevalence was higher in case-patients than controls 6 and 12 months after disease onset. Continued vaccine research to prevent acute illness and long-term sequelae is essential.

Estimated Incubation Period for Zika Virus Disease.

Information about the Zika virus disease incubation period can help identify risk periods and local virus transmission. In 2015-2016, data from 197 symptomatic travelers with recent Zika virus infection indicated an estimated incubation period of 3-14 days. For symptomatic persons with symptoms >2 weeks after travel, transmission might be not travel associated.

Chikungunya virus disease outbreak in Yap State, Federated States of Micronesia.

Chikungunya virus is a mosquito-borne alphavirus which causes an acute febrile illness associated with polyarthralgia. Beginning in August 2013, clinicians from the Yap State Department of Health in the Federated States of Micronesia (FSM) identified an unusual cluster of illness which was subsequently confirmed to be chikungunya virus disease. Chikungunya virus disease previously had not been recognized in FSM.

West Nile Virus and Other Nationally Notifiable Arboviral Diseases - United States, 2015.

Arthropod-borne viruses (arboviruses) are transmitted to humans primarily through the bites of infected mosquitoes and ticks. The leading cause of domestically acquired arboviral disease in the United States is West Nile virus (WNV) (1). Other arboviruses, including La Crosse, St. Louis encephalitis, Jamestown Canyon, Powassan, and eastern equine encephalitis viruses, also cause sporadic cases and outbreaks. This report summarizes surveillance data reported to CDC in 2015 for nationally notifiable arboviruses. It excludes dengue, chikungunya, and Zika viruses, which are primarily nondomestic viruses typically acquired through travel (and are addressed in other CDC reports). In 2015, 45 states and the District of Columbia (DC) reported 2,282 cases of domestic arboviral disease. Among these cases, 2,175 (95%) were WNV disease and 1,455 (67%) of those were classified as neuroinvasive disease (meningitis, encephalitis, or acute flaccid paralysis). The national incidence of WNV neuroinvasive disease was 0.45 cases per 100,000 population. Because arboviral diseases continue to cause serious illness, maintaining surveillance is important to direct prevention activities such as reduction of vector populations and screening of blood donors.

Epidemiology of Chikungunya in the Americas.

Chikungunya virus (CHIKV) emerged in the Americas in late 2013 to cause substantial acute and chronic morbidity. About 1.1 million cases of chikungunya were reported within a year, including severe cases and deaths. The burden of chikungunya is unclear owing to inadequate disease surveillance and underdiagnosis. Virus evolution, globalization, and climate change may further CHIKV spread. No approved vaccine or antiviral therapeutics exist. Early detection and appropriate management could reduce the burden of severe atypical and chronic arthritic disease. Improved surveillance and risk assessment are needed to mitigate the impact of chikungunya.

Investigation of a Guillain-Barré syndrome cluster in the Republic of Fiji.

In 2014, we investigated a cluster of Guillain-Barre syndrome (GBS) in Fiji that occurred during a dengue epidemic. We designed a case-control study to determine the etiology.

Characterizing the Pattern of Anomalies in Congenital Zika Syndrome for Pediatric Clinicians.

Zika virus infection can be prenatally passed from a pregnant woman to her fetus. There is sufficient evidence to conclude that intrauterine Zika virus infection is a cause of microcephaly and serious brain anomalies, but the full spectrum of anomalies has not been delineated. To inform pediatric clinicians who may be called on to evaluate and treat affected infants and children, we review the most recent evidence to better characterize congenital Zika syndrome.

Knowledge and use of prevention measures for chikungunya virus among visitors - Virgin Islands National Park, 2015.

In June 2014, the mosquito-borne chikungunya virus (CHIKV) emerged in the U.S. Virgin Islands (USVI), a location where tourists comprise the majority of the population during peak season (January-April). Limited information is available concerning visitors' CHIKV awareness and prevention measures.

Characteristics of Children Aged <18 Years with Zika Virus Disease Acquired Postnatally - U.S. States, January 2015-July 2016.

Zika virus is an emerging mosquito-borne flavivirus that typically causes an asymptomatic infection or mild illness, although infection during pregnancy is a cause of microcephaly and other serious brain abnormalities. Guillain-Barré syndrome and other neurologic complications can occur in adults after Zika virus infection. However, there are few published reports describing postnatally acquired Zika virus disease among children. During January 2015-July 2016, a total of 158 cases of confirmed or probable postnatally acquired Zika virus disease among children aged <18 years were reported to CDC from U.S. states. The median age was 14 years (range = 1 month-17 years), and 88 (56%) were female. Two (1%) patients were hospitalized; none developed Guillain-Barré syndrome, and none died. All reported cases were travel-associated. Overall, 129 (82%) children had rash, 87 (55%) had fever, 45 (29%) had conjunctivitis, and 44 (28%) had arthralgia. Health care providers should consider a diagnosis of Zika virus disease in children who have an epidemiologic risk factor and clinically compatible illness, and should report cases to their state or local health department.

Zika Virus Disease Cases - 50 States and the District of Columbia, January 1-July 31, 2016.

Zika virus is a mosquito-borne flavivirus primarily transmitted to humans by Aedes aegypti mosquitoes (1). Zika virus infections have also been documented through intrauterine transmission resulting in congenital infection; intrapartum transmission from a viremic mother to her newborn; sexual transmission; blood transfusion; and laboratory exposure (1-5). Most Zika virus infections are asymptomatic (1,6). Clinical illness, when it occurs, is generally mild and characterized by acute onset of fever, maculopapular rash, arthralgia, or nonpurulent conjunctivitis. However, Zika virus infection during pregnancy can cause adverse outcomes such as fetal loss, and microcephaly and other serious brain anomalies (1-3). Guillain-Barré syndrome, a rare autoimmune condition affecting the peripheral nervous system, also has been associated with Zika virus infection (1). Following the identification of local transmission of Zika virus in Brazil in May 2015, the virus has continued to spread throughout the Region of the Americas, and travel-associated cases have increased (7). In 2016, Zika virus disease and congenital infections became nationally notifiable conditions in the United States (8). As of September 3, 2016, a total of 2,382 confirmed and probable cases of Zika virus disease with symptom onset during January 1-July 31, 2016, had been reported from 48 of 50 U.S. states and the District of Columbia. Most cases (2,354; 99%) were travel-associated, with either direct travel or an epidemiologic link to a traveler to a Zika virus-affected area. Twenty-eight (1%) cases were reported as locally acquired, including 26 associated with mosquito-borne transmission, one acquired in a laboratory, and one with an unknown mode of transmission. Zika virus disease should be considered in patients with compatible clinical signs or symptoms who traveled to or reside in areas with ongoing Zika virus transmission or who had unprotected sex with someone who traveled to those areas. Health care providers should continue to educate patients, especially pregnant women, about the importance of avoiding infection with Zika virus, and all pregnant women should be assessed for possible Zika virus exposure at each prenatal visit (2).

Preliminary Findings from an Investigation of Zika Virus Infection in a Patient with No Known Risk Factors - Utah, 2016.

On July 12, 2016, the Utah Department of Health (UDOH) was notified by a clinician caring for an adult (patient A) who was evaluated for fever, rash, and conjunctivitis that began on July 1. Patient A had not traveled to an area with ongoing Zika virus transmission; had not had sexual contact with a person who recently traveled; and had not received a blood transfusion, organ transplant, or mosquito bites (1). Patient A provided care over several days to an elderly male family contact (the index patient) who contracted Zika virus abroad. The index patient developed septic shock with multiple organ failure and died in the hospital on June 25, 2016. The index patient's blood specimen obtained 2 days before his death had a level of viremia approximately 100,000 times higher than the average level reported in persons infected with Zika virus (2). Zika virus infection was diagnosed in patient A by real-time reverse transcription-polymerase chain reaction (rRT-PCR) testing on a urine specimen collected 7 days after symptom onset. In addition, a serum specimen collected 11 days after symptom onset, after patient A's symptoms had resolved, was positive for antibodies to Zika virus by Zika immunoglobulin M (IgM) capture enzyme-linked immunosorbent assay (MAC-ELISA) and had neutralizing antibodies detected by plaque-reduction neutralization testing (PRNT). Working with Salt Lake and Davis County Health Departments, UDOH requested assistance from CDC with an investigation to determine patient A's exposures and determine a probable source of infection.

Update: Interim Guidance for the Evaluation and Management of Infants with Possible Congenital Zika Virus Infection - United States, August 2016.

CDC has updated its interim guidance for U.S. health care providers caring for infants born to mothers with possible Zika virus infection during pregnancy (1). Laboratory testing is recommended for 1) infants born to mothers with laboratory evidence of Zika virus infection during pregnancy and 2) infants who have abnormal clinical or neuroimaging findings suggestive of congenital Zika syndrome and a maternal epidemiologic link suggesting possible transmission, regardless of maternal Zika virus test results. Congenital Zika syndrome is a recently recognized pattern of congenital anomalies associated with Zika virus infection during pregnancy that includes microcephaly, intracranial calcifications or other brain anomalies, or eye anomalies, among others (2). Recommended infant laboratory evaluation includes both molecular (real-time reverse transcription-polymerase chain reaction [rRT-PCR]) and serologic (immunoglobulin M [IgM]) testing. Initial samples should be collected directly from the infant in the first 2 days of life, if possible; testing of cord blood is not recommended. A positive infant serum or urine rRT-PCR test result confirms congenital Zika virus infection. Positive Zika virus IgM testing, with a negative rRT-PCR result, indicates probable congenital Zika virus infection. In addition to infant Zika virus testing, initial evaluation of all infants born to mothers with laboratory evidence of Zika virus infection during pregnancy should include a comprehensive physical examination, including a neurologic examination, postnatal head ultrasound, and standard newborn hearing screen. Infants with laboratory evidence of congenital Zika virus infection should have a comprehensive ophthalmologic exam and hearing assessment by auditory brainstem response (ABR) testing before 1 month of age. Recommendations for follow-up of infants with laboratory evidence of congenital Zika virus infection depend on whether abnormalities consistent with congenital Zika syndrome are present. Infants with abnormalities consistent with congenital Zika syndrome should have a coordinated evaluation by multiple specialists within the first month of life; additional evaluations will be needed within the first year of life, including assessments of vision, hearing, feeding, growth, and neurodevelopmental and endocrine function. Families and caregivers will also need ongoing psychosocial support and assistance with coordination of care. Infants with laboratory evidence of congenital Zika virus infection without apparent abnormalities should have ongoing developmental monitoring and screening by the primary care provider; repeat hearing testing is recommended. This guidance will be updated when additional information becomes available.

Adverse event reports following yellow fever vaccination, 2007-13.

Yellow fever (YF) vaccines have been available since the 1930s and are generally considered safe and effective. However, rare reports of serious adverse events (SAE) following vaccination have prompted the Advisory Committee for Immunization Practices to periodically expand the list of conditions considered contraindications and precautions to vaccination.

Interim Guidance for Interpretation of Zika Virus Antibody Test Results.

Zika virus is a single-stranded RNA virus in the genus Flavivirus and is closely related to dengue, West Nile, Japanese encephalitis, and yellow fever viruses (1,2). Among flaviviruses, Zika and dengue virus share similar symptoms of infection, transmission cycles, and geographic distribution. Diagnostic testing for Zika virus infection can be accomplished using both molecular and serologic methods. For persons with suspected Zika virus disease, a positive real-time reverse transcription-polymerase chain reaction (rRT-PCR) result confirms Zika virus infection, but a negative rRT-PCR result does not exclude infection (3-7). In these cases, immunoglobulin (Ig) M and neutralizing antibody testing can identify additional recent Zika virus infections (6,7). However, Zika virus antibody test results can be difficult to interpret because of cross-reactivity with other flaviviruses, which can preclude identification of the specific infecting virus, especially when the person previously was infected with or vaccinated against a related flavivirus (8). This is important because the results of Zika and dengue virus testing will guide clinical management. Pregnant women with laboratory evidence of Zika virus infection should be evaluated and managed for possible adverse pregnancy outcomes and be reported to the U.S. Zika Pregnancy Registry or the Puerto Rico Zika Active Pregnancy Surveillance System for clinical follow-up (9,10). All patients with clinically suspected dengue should have proper management to reduce the risk for hemorrhage and shock (11). If serologic testing indicates recent flavivirus infection that could be caused by either Zika or dengue virus, patients should be clinically managed for both infections because they might have been infected with either virus.

Zika Virus Disease in Travelers Returning to the United States, 2010-2014.

Zika virus is an emerging mosquito-borne flavivirus that typically causes a mild febrile illness with rash, arthralgia, or conjunctivitis. Zika virus has recently caused large outbreaks of disease in southeast Asia, Pacific Ocean Islands, and the Americas. We identified all positive Zika virus test results performed at U.S. Centers for Disease Control and Prevention from 2010 to 2014. For persons with test results indicating a recent infection with Zika virus, we collected information on demographics, travel history, and clinical features. Eleven Zika virus disease cases were identified among travelers returning to the United States. The median age of cases was 50 years (range: 29-74 years) and six (55%) were male. Nine (82%) cases had their illness onset from January to April. All cases reported a travel history to islands in the Pacific Ocean during the days preceding illness onset, and all cases were potentially viremic while in the United States. Public health prevention messages about decreasing mosquito exposure, preventing sexual exposure, and preventing infection in pregnant women should be targeted to individuals traveling to or living in areas with Zika virus activity. Health-care providers and public health officials should be educated about the recognition, diagnosis, and prevention of Zika virus disease.

Zika Virus Disease: A CDC Update for Pediatric Health Care Providers.

Zika virus is a mosquito-borne flavivirus discovered in Africa in 1947. Most persons with Zika virus infection are asymptomatic; symptoms when present are generally mild and include fever, maculopapular rash, arthralgia, and conjunctivitis. Since early 2015, Zika virus has spread rapidly through the Americas, with local transmission identified in 31 countries and territories as of February 29, 2016, including several US territories. All age groups are susceptible to Zika virus infection, including children. Maternal-fetal transmission of Zika virus has been documented; evidence suggests that congenital Zika virus infection is associated with microcephaly and other adverse pregnancy and infant outcomes. Perinatal transmission has been reported in 2 cases; 1 was asymptomatic, and the other had thrombocytopenia and a rash. Based on limited information, Zika virus infection in children is mild, similar to that in adults. The long-term sequelae of congenital, perinatal, and pediatric Zika virus infection are largely unknown. No vaccine to prevent Zika virus infection is available, and treatment is supportive. The primary means of preventing Zika virus infection is prevention of mosquito bites in areas with local Zika virus transmission. Given the possibility of limited local transmission of Zika virus in the continental United States and frequent travel from affected countries to the United States, US pediatric health care providers need to be familiar with Zika virus infection. This article reviews the Zika virus, its epidemiologic characteristics, clinical presentation, laboratory testing, treatment, and prevention to assist providers in the evaluation and management of children with possible Zika virus infection.

Update: Interim Guidelines for Health Care Providers Caring for Infants and Children with Possible Zika Virus Infection--United States, February 2016.

CDC has updated its interim guidelines for U.S. health care providers caring for infants born to mothers who traveled to or resided in areas with Zika virus transmission during pregnancy and expanded guidelines to include infants and children with possible acute Zika virus disease. This update contains a new recommendation for routine care for infants born to mothers who traveled to or resided in areas with Zika virus transmission during pregnancy but did not receive Zika virus testing, when the infant has a normal head circumference, normal prenatal and postnatal ultrasounds (if performed), and normal physical examination. Acute Zika virus disease should be suspected in an infant or child aged <18 years who 1) traveled to or resided in an affected area within the past 2 weeks and 2) has ≥2 of the following manifestations: fever, rash, conjunctivitis, or arthralgia. Because maternal-infant transmission of Zika virus during delivery is possible, acute Zika virus disease should also be suspected in an infant during the first 2 weeks of life 1) whose mother traveled to or resided in an affected area within 2 weeks of delivery and 2) who has ≥2 of the following manifestations: fever, rash, conjunctivitis, or arthralgia. Evidence suggests that Zika virus illness in children is usually mild. As an arboviral disease, Zika virus disease is nationally notifiable. Health care providers should report suspected cases of Zika virus disease to their local, state, or territorial health departments to arrange testing and so that action can be taken to reduce the risk for local Zika virus transmission. As new information becomes available, these guidelines will be updated: http://www.cdc.gov/zika/.

Zika Virus and Pregnancy: What Obstetric Health Care Providers Need to Know.

Zika virus is a flavivirus transmitted by Aedes (Stegomyia) species of mosquitoes. In May 2015, the World Health Organization confirmed the first local transmission of Zika virus in the Americas in Brazil. The virus has spread rapidly to other countries in the Americas; as of January 29, 2016, local transmission has been detected in at least 22 countries or territories, including the Commonwealth of Puerto Rico and the U.S. Virgin Islands. Zika virus can infect pregnant women in all three trimesters. Although pregnant women do not appear to be more susceptible to or more severely affected by Zika virus infection, maternal-fetal transmission has been documented. Several pieces of evidence suggest that maternal Zika virus infection is associated with adverse neonatal outcomes, most notably microcephaly. Because of the number of countries and territories with local Zika virus transmission, it is likely that obstetric health care providers will care for pregnant women who live in or have traveled to an area of local Zika virus transmission. We review information on Zika virus, its clinical presentation, modes of transmission, laboratory testing, effects during pregnancy, and methods of prevention to assist obstetric health care providers in caring for pregnant women considering travel or with a history of travel to areas with ongoing Zika virus transmission and pregnant women residing in areas with ongoing Zika virus transmission.

Zika virus and microcephaly: why is this situation a PHEIC?

Update: Interim Guidelines for Health Care Providers Caring for Pregnant Women and Women of Reproductive Age with Possible Zika Virus Exposure - United States, 2016.

CDC has updated its interim guidelines for U.S. health care providers caring for pregnant women during a Zika virus outbreak (1). Updated guidelines include a new recommendation to offer serologic testing to asymptomatic pregnant women (women who do not report clinical illness consistent with Zika virus disease) who have traveled to areas with ongoing Zika virus transmission. Testing can be offered 2-12 weeks after pregnant women return from travel. This update also expands guidance to women who reside in areas with ongoing Zika virus transmission, and includes recommendations for screening, testing, and management of pregnant women and recommendations for counseling women of reproductive age (15-44 years). Pregnant women who reside in areas with ongoing Zika virus transmission have an ongoing risk for infection throughout their pregnancy. For pregnant women with clinical illness consistent with Zika virus disease,* testing is recommended during the first week of illness. For asymptomatic pregnant women residing in areas with ongoing Zika virus transmission, testing is recommended at the initiation of prenatal care with follow-up testing mid-second trimester. Local health officials should determine when to implement testing of asymptomatic pregnant women based on information about levels of Zika virus transmission and laboratory capacity. Health care providers should discuss reproductive life plans, including pregnancy intention and timing, with women of reproductive age in the context of the potential risks associated with Zika virus infection.

Interim Guidelines for the Evaluation and Testing of Infants with Possible Congenital Zika Virus Infection - United States, 2016.

CDC has developed interim guidelines for health care providers in the United States who are caring for infants born to mothers who traveled to or resided in an area with Zika virus transmission during pregnancy. These guidelines include recommendations for the testing and management of these infants. Guidance is subject to change as more information becomes available; the latest information, including answers to commonly asked questions, can be found online (http://www.cdc.gov/zika). Pediatric health care providers should work closely with obstetric providers to identify infants whose mothers were potentially infected with Zika virus during pregnancy (based on travel to or residence in an area with Zika virus transmission [http://wwwnc.cdc.gov/travel/notices]), and review fetal ultrasounds and maternal testing for Zika virus infection (see Interim Guidelines for Pregnant Women During a Zika Virus Outbreak*) (1). Zika virus testing is recommended for 1) infants with microcephaly or intracranial calcifications born to women who traveled to or resided in an area with Zika virus transmission while pregnant; or 2) infants born to mothers with positive or inconclusive test results for Zika virus infection. For infants with laboratory evidence of a possible congenital Zika virus infection, additional clinical evaluation and follow-up is recommended. Health care providers should contact their state or territorial health department to facilitate testing. As an arboviral disease, Zika virus disease is a nationally notifiable condition.