PubTransformer

A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

Ingrid B Rabe - Top 30 Publications

Ability to serologically confirm recent Zika virus infection in areas with varying past incidence of dengue virus infection - United States and territories, 2016.

Background. Cross-reactivity within flavivirus antibody assays, produced by shared epitopes in the envelope proteins, can complicate serological diagnosis of Zika virus (ZIKAV) infection. We assessed the utility of the plaque reduction neutralization test (PRNT) to confirm recent ZIKAV infections and rule out misleading positive IgM results in areas with varying past dengue virus (DENV) infection incidence. Methods. We reviewed PRNT results of sera collected for diagnosis of ZIKAV infection from January 1 through August 31, 2016 with positive ZIKAV IgM results and ZIKAV and DENV PRNT performed. PRNT result interpretations included ZIKAV, unspecified flavivirus, DENV infection, or negative. For this analysis, ZIKAV IgM was considered false-positive for samples interpreted as DENV infection or negative. Results. In US states, 208 (27%) of 759 IgM positives were confirmed as ZIKAV, compared to 11 (21%) of 52 in the US Virgin Islands (USVI), 15 (15%) of 103 in American Samoa, and 13 (11%) of 123 in Puerto Rico. In American Samoa and Puerto Rico, more than 80% of IgM positives were unspecified flavivirus infections. The false-positivity rate was 27% in US states, 18% in USVI, 2% in American Samoa, and 6% in Puerto Rico. Conclusions. In US states, PRNT provided a virus-specific diagnosis or ruled out infection in the majority of IgM positive samples. Almost a third of ZIKAV IgM positive results did not confirm; therefore, providers and patients must understand that IgM results are preliminary. In territories with historically higher DENV transmission, PRNT usually could not differentiate between ZIKAV and DENV infections.

St. Louis encephalitis virus possibly transmitted through blood transfusion-Arizona, 2015.

St. Louis encephalitis virus is a mosquito-borne flavivirus that infrequently causes epidemic central nervous system infections. In the United States, blood donors are not screened for St. Louis encephalitis virus infection, and transmission through blood transfusion has not been reported. During September 2015, St. Louis encephalitis virus infection was confirmed in an Arizona kidney transplant recipient. An investigation was initiated to determine the infection source.

Update: Interim Guidance for Health Care Providers Caring for Pregnant Women with Possible Zika Virus Exposure - United States (Including U.S. Territories), July 2017.

CDC has updated the interim guidance for U.S. health care providers caring for pregnant women with possible Zika virus exposure in response to 1) declining prevalence of Zika virus disease in the World Health Organization's Region of the Americas (Americas) and 2) emerging evidence indicating prolonged detection of Zika virus immunoglobulin M (IgM) antibodies. Zika virus cases were first reported in the Americas during 2015-2016; however, the incidence of Zika virus disease has since declined. As the prevalence of Zika virus disease declines, the likelihood of false-positive test results increases. In addition, emerging epidemiologic and laboratory data indicate that, as is the case with other flaviviruses, Zika virus IgM antibodies can persist beyond 12 weeks after infection. Therefore, IgM test results cannot always reliably distinguish between an infection that occurred during the current pregnancy and one that occurred before the current pregnancy, particularly for women with possible Zika virus exposure before the current pregnancy. These limitations should be considered when counseling pregnant women about the risks and benefits of testing for Zika virus infection during pregnancy. This updated guidance emphasizes a shared decision-making model for testing and screening pregnant women, one in which patients and providers work together to make decisions about testing and care plans based on patient preferences and values, clinical judgment, and a balanced assessment of risks and expected outcomes.

Zika Virus: Common Questions and Answers.

Since local mosquito-borne transmission of Zika virus was first reported in Brazil in early 2015, the virus has spread rapidly, with active transmission reported in at least 61 countries and territories worldwide, including the United States. Zika virus infection during pregnancy is a cause of microcephaly and other severe brain anomalies. The virus is transmitted primarily through the bite of an infected Aedes mosquito, but other routes of transmission include sexual, mother-to-fetus during pregnancy, mother-to-infant at delivery, laboratory exposure, and, possibly, transfusion of blood products. Most persons with Zika virus infection are asymptomatic or have only mild symptoms; hospitalizations and deaths are rare. When symptoms are present, maculopapular rash, fever, arthralgia, and conjunctivitis are most common. Zika virus testing is recommended for persons with possible exposure (those who have traveled to or live in an area with active transmission, or persons who had sex without a condom with a person with possible exposure) if they have symptoms consistent with Zika virus disease. Testing is also recommended for pregnant women with possible exposure, regardless of whether symptoms are present. Treatment is supportive, and no vaccine is currently available. The primary methods of prevention include avoiding bites of infected Aedes mosquitoes and reducing the risk of sexual transmission. Pregnant women should not travel to areas with active Zika virus transmission, and men and women who are planning to conceive in the near future should consider avoiding nonessential travel to these areas. Condoms can reduce the risk of sexual transmission.

Update: Interim Guidance for Preconception Counseling and Prevention of Sexual Transmission of Zika Virus for Persons with Possible Zika Virus Exposure - United States, September 2016.

CDC has updated its interim guidance for persons with possible Zika virus exposure who are planning to conceive (1) and interim guidance to prevent transmission of Zika virus through sexual contact (2), now combined into a single document. Guidance for care for pregnant women with possible Zika virus exposure was previously published (3). Possible Zika virus exposure is defined as travel to or residence in an area of active Zika virus transmission (http://www.cdc.gov/zika/geo/index.html), or sex* without a condom(†) with a partner who traveled to or lived in an area of active transmission. Based on new though limited data, CDC now recommends that all men with possible Zika virus exposure who are considering attempting conception with their partner, regardless of symptom status,(§) wait to conceive until at least 6 months after symptom onset (if symptomatic) or last possible Zika virus exposure (if asymptomatic). Recommendations for women planning to conceive remain unchanged: women with possible Zika virus exposure are recommended to wait to conceive until at least 8 weeks after symptom onset (if symptomatic) or last possible Zika virus exposure (if asymptomatic). Couples with possible Zika virus exposure, who are not pregnant and do not plan to become pregnant, who want to minimize their risk for sexual transmission of Zika virus should use a condom or abstain from sex for the same periods for men and women described above. Women of reproductive age who have had or anticipate future Zika virus exposure who do not want to become pregnant should use the most effective contraceptive method that can be used correctly and consistently. These recommendations will be further updated when additional data become available.

Zika Virus Disease Cases - 50 States and the District of Columbia, January 1-July 31, 2016.

Zika virus is a mosquito-borne flavivirus primarily transmitted to humans by Aedes aegypti mosquitoes (1). Zika virus infections have also been documented through intrauterine transmission resulting in congenital infection; intrapartum transmission from a viremic mother to her newborn; sexual transmission; blood transfusion; and laboratory exposure (1-5). Most Zika virus infections are asymptomatic (1,6). Clinical illness, when it occurs, is generally mild and characterized by acute onset of fever, maculopapular rash, arthralgia, or nonpurulent conjunctivitis. However, Zika virus infection during pregnancy can cause adverse outcomes such as fetal loss, and microcephaly and other serious brain anomalies (1-3). Guillain-Barré syndrome, a rare autoimmune condition affecting the peripheral nervous system, also has been associated with Zika virus infection (1). Following the identification of local transmission of Zika virus in Brazil in May 2015, the virus has continued to spread throughout the Region of the Americas, and travel-associated cases have increased (7). In 2016, Zika virus disease and congenital infections became nationally notifiable conditions in the United States (8). As of September 3, 2016, a total of 2,382 confirmed and probable cases of Zika virus disease with symptom onset during January 1-July 31, 2016, had been reported from 48 of 50 U.S. states and the District of Columbia. Most cases (2,354; 99%) were travel-associated, with either direct travel or an epidemiologic link to a traveler to a Zika virus-affected area. Twenty-eight (1%) cases were reported as locally acquired, including 26 associated with mosquito-borne transmission, one acquired in a laboratory, and one with an unknown mode of transmission. Zika virus disease should be considered in patients with compatible clinical signs or symptoms who traveled to or reside in areas with ongoing Zika virus transmission or who had unprotected sex with someone who traveled to those areas. Health care providers should continue to educate patients, especially pregnant women, about the importance of avoiding infection with Zika virus, and all pregnant women should be assessed for possible Zika virus exposure at each prenatal visit (2).

Adverse event reports following yellow fever vaccination, 2007-13.

Yellow fever (YF) vaccines have been available since the 1930s and are generally considered safe and effective. However, rare reports of serious adverse events (SAE) following vaccination have prompted the Advisory Committee for Immunization Practices to periodically expand the list of conditions considered contraindications and precautions to vaccination.

Interim Guidance for Interpretation of Zika Virus Antibody Test Results.

Zika virus is a single-stranded RNA virus in the genus Flavivirus and is closely related to dengue, West Nile, Japanese encephalitis, and yellow fever viruses (1,2). Among flaviviruses, Zika and dengue virus share similar symptoms of infection, transmission cycles, and geographic distribution. Diagnostic testing for Zika virus infection can be accomplished using both molecular and serologic methods. For persons with suspected Zika virus disease, a positive real-time reverse transcription-polymerase chain reaction (rRT-PCR) result confirms Zika virus infection, but a negative rRT-PCR result does not exclude infection (3-7). In these cases, immunoglobulin (Ig) M and neutralizing antibody testing can identify additional recent Zika virus infections (6,7). However, Zika virus antibody test results can be difficult to interpret because of cross-reactivity with other flaviviruses, which can preclude identification of the specific infecting virus, especially when the person previously was infected with or vaccinated against a related flavivirus (8). This is important because the results of Zika and dengue virus testing will guide clinical management. Pregnant women with laboratory evidence of Zika virus infection should be evaluated and managed for possible adverse pregnancy outcomes and be reported to the U.S. Zika Pregnancy Registry or the Puerto Rico Zika Active Pregnancy Surveillance System for clinical follow-up (9,10). All patients with clinically suspected dengue should have proper management to reduce the risk for hemorrhage and shock (11). If serologic testing indicates recent flavivirus infection that could be caused by either Zika or dengue virus, patients should be clinically managed for both infections because they might have been infected with either virus.

Zika Virus Infection Among U.S. Pregnant Travelers - August 2015-February 2016.

After reports of microcephaly and other adverse pregnancy outcomes in infants of mothers infected with Zika virus during pregnancy, CDC issued a travel alert on January 15, 2016, advising pregnant women to consider postponing travel to areas with active transmission of Zika virus. On January 19, CDC released interim guidelines for U.S. health care providers caring for pregnant women with travel to an affected area, and an update was released on February 5. As of February 17, CDC had received reports of nine pregnant travelers with laboratory-confirmed Zika virus disease; 10 additional reports of Zika virus disease among pregnant women are currently under investigation. No Zika virus-related hospitalizations or deaths among pregnant women were reported. Pregnancy outcomes among the nine confirmed cases included two early pregnancy losses, two elective terminations, and three live births (two apparently healthy infants and one infant with severe microcephaly); two pregnancies (approximately 18 weeks' and 34 weeks' gestation) are continuing without known complications. Confirmed cases of Zika virus infection were reported among women who had traveled to one or more of the following nine areas with ongoing local transmission of Zika virus: American Samoa, Brazil, El Salvador, Guatemala, Haiti, Honduras, Mexico, Puerto Rico, and Samoa. This report summarizes findings from the nine women with confirmed Zika virus infection during pregnancy, including case reports for four women with various clinical outcomes. U.S. health care providers caring for pregnant women with possible Zika virus exposure during pregnancy should follow CDC guidelines for patient evaluation and management. Zika virus disease is a nationally notifiable condition. CDC has developed a voluntary registry to collect information about U.S. pregnant women with confirmed Zika virus infection and their infants. Information about the registry is in preparation and will be available on the CDC website.

Adverse events following vaccination with an inactivated, Vero cell culture-derived Japanese encephalitis vaccine in the United States, 2009-2012.

In March 2009, the U.S. Food and Drug Administration licensed an inactivated, Vero cell culture-derived Japanese encephalitis vaccine (JE-VC [Ixiaro]) for use in adults. The vaccine was licensed based on clinical trial safety data in 3558 JE-VC recipients. It is essential to monitor post-licensure surveillance data to evaluate the safety of JE-VC because rare adverse events may not be detected until the vaccine is administered to a larger population.

Donor-derived West Nile virus infection in solid organ transplant recipients: report of four additional cases and review of clinical, diagnostic, and therapeutic features.

We describe four solid-organ transplant recipients with donor-derived West Nile virus (WNV) infection (encephalitis 3, asymptomatic 1) from a common donor residing in a region of increased WNV activity. All four transplant recipients had molecular evidence of WNV infection in their serum and/or cerebrospinal fluid (CSF) by reverse transcription polymerase chain reaction (RT-PCR) testing. Serum from the organ donor was positive for WNV IgM but negative for WNV RNA, whereas his lymph node and spleen tissues tested positive for WNV by RT-PCR. Combination therapy included intravenous immunoglobulin (4 cases), interferon (3 cases), fresh frozen plasma with WNV IgG (2 cases), and ribavirin (1 case). Two of the four transplant recipients survived.Review of the 20 published cases of organ-derived WNV infection found that this infection is associated with a high incidence of neuroinvasive disease (70%) and severe morbidity and mortality (30%). Median time to onset of symptomatic WNV infection was 13 days after transplantation (range 5-37 days). Initial unexplained fever unresponsive to antibiotic therapy followed by rapid onset of neurologic deficits was the most common clinical presentation. Confirmation of infection was made by testing serum and CSF for both WNV RNA by RT-PCR and WNV IgM by serological assays. Treatment usually included supportive care, reduction of immunosuppression, and frequent intravenous immunoglobulin. The often negative results for WNV by current RT-PCR and serological assays and the absence of clinical signs of acute infection in donors contribute to the sporadic occurrence of donor-derived WNV infection. Potential organ donors should be assessed for unexplained fever and neurological symptoms, particularly if they reside in areas of increased WNV activity.

West Nile virus RNA in tissues from donor associated with transmission to organ transplant recipients.

We identified West Nile virus (WNV) RNA in skin, fat, muscle, tendon, and bone marrow from a deceased donor associated with WNV transmission through solid organ transplantation. WNV could not be cultured from the RNA-positive tissues. Further studies are needed to determine if WNV can be transmitted from postmortem tissues.

Fatal transplant-associated west nile virus encephalitis and public health investigation-california, 2010.

In December 2010, a case of West Nile virus (WNV) encephalitis occurring in a kidney recipient shortly after organ transplantation was identified.