A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

Amanda Panella - Top 30 Publications

Ability To Serologically Confirm Recent Zika Virus Infection in Areas with Varying Past Incidence of Dengue Virus Infection in the United States and U.S. Territories in 2016.

Cross-reactivity within flavivirus antibody assays, produced by shared epitopes in the envelope proteins, can complicate the serological diagnosis of Zika virus (ZIKAV) infection. We assessed the utility of the plaque reduction neutralization test (PRNT) to confirm recent ZIKAV infections and rule out misleading positive immunoglobulin M (IgM) results in areas with various levels of past dengue virus (DENV) infection incidence. We reviewed PRNT results of sera collected for diagnosis of ZIKAV infection from 1 January through 31 August 2016 with positive ZIKAV IgM results, and ZIKAV and DENV PRNTs were performed. PRNT result interpretations included ZIKAV, unspecified flavivirus, DENV infection, or negative. For this analysis, ZIKAV IgM was considered false positive for samples interpreted as a DENV infection or negative. In U.S. states, 208 (27%) of 759 IgM-positive results were confirmed to be ZIKAV compared to 11 (21%) of 52 in the U.S. Virgin Islands (USVI), 15 (15%) of 103 in American Samoa, and 13 (11%) of 123 in Puerto Rico. In American Samoa and Puerto Rico, more than 80% of IgM-positive results were unspecified flavivirus infections. The false-positivity rate was 27% in U.S. states, 18% in the USVI, 2% in American Samoa, and 6% in Puerto Rico. In U.S. states, the PRNT provided a virus-specific diagnosis or ruled out infection in the majority of IgM-positive samples. Almost a third of ZIKAV IgM-positive results were not confirmed; therefore, providers and patients must understand that IgM results are preliminary. In territories with historically higher rates of DENV transmission, the PRNT usually could not differentiate between ZIKAV and DENV infections.

Zika Virus Infection in Patient with No Known Risk Factors, Utah, USA, 2016.

In 2016, Zika virus disease developed in a man (patient A) who had no known risk factors beyond caring for a relative who died of this disease (index patient). We investigated the source of infection for patient A by surveying other family contacts, healthcare personnel, and community members, and testing samples for Zika virus. We identified 19 family contacts who had similar exposures to the index patient; 86 healthcare personnel had contact with the index patient, including 57 (66%) who had contact with body fluids. Of 218 community members interviewed, 28 (13%) reported signs/symptoms and 132 (61%) provided a sample. Except for patient A, no other persons tested had laboratory evidence of recent Zika virus infection. Of 5,875 mosquitoes collected, none were known vectors of Zika virus and all were negative for Zika virus. The mechanism of transmission to patient A remains unknown but was likely person-to-person contact with the index patient.

Zika Virus Disease in Travelers Returning to the United States, 2010-2014.

Zika virus is an emerging mosquito-borne flavivirus that typically causes a mild febrile illness with rash, arthralgia, or conjunctivitis. Zika virus has recently caused large outbreaks of disease in southeast Asia, Pacific Ocean Islands, and the Americas. We identified all positive Zika virus test results performed at U.S. Centers for Disease Control and Prevention from 2010 to 2014. For persons with test results indicating a recent infection with Zika virus, we collected information on demographics, travel history, and clinical features. Eleven Zika virus disease cases were identified among travelers returning to the United States. The median age of cases was 50 years (range: 29-74 years) and six (55%) were male. Nine (82%) cases had their illness onset from January to April. All cases reported a travel history to islands in the Pacific Ocean during the days preceding illness onset, and all cases were potentially viremic while in the United States. Public health prevention messages about decreasing mosquito exposure, preventing sexual exposure, and preventing infection in pregnant women should be targeted to individuals traveling to or living in areas with Zika virus activity. Health-care providers and public health officials should be educated about the recognition, diagnosis, and prevention of Zika virus disease.

Zika Virus Infection Among U.S. Pregnant Travelers - August 2015-February 2016.

After reports of microcephaly and other adverse pregnancy outcomes in infants of mothers infected with Zika virus during pregnancy, CDC issued a travel alert on January 15, 2016, advising pregnant women to consider postponing travel to areas with active transmission of Zika virus. On January 19, CDC released interim guidelines for U.S. health care providers caring for pregnant women with travel to an affected area, and an update was released on February 5. As of February 17, CDC had received reports of nine pregnant travelers with laboratory-confirmed Zika virus disease; 10 additional reports of Zika virus disease among pregnant women are currently under investigation. No Zika virus-related hospitalizations or deaths among pregnant women were reported. Pregnancy outcomes among the nine confirmed cases included two early pregnancy losses, two elective terminations, and three live births (two apparently healthy infants and one infant with severe microcephaly); two pregnancies (approximately 18 weeks' and 34 weeks' gestation) are continuing without known complications. Confirmed cases of Zika virus infection were reported among women who had traveled to one or more of the following nine areas with ongoing local transmission of Zika virus: American Samoa, Brazil, El Salvador, Guatemala, Haiti, Honduras, Mexico, Puerto Rico, and Samoa. This report summarizes findings from the nine women with confirmed Zika virus infection during pregnancy, including case reports for four women with various clinical outcomes. U.S. health care providers caring for pregnant women with possible Zika virus exposure during pregnancy should follow CDC guidelines for patient evaluation and management. Zika virus disease is a nationally notifiable condition. CDC has developed a voluntary registry to collect information about U.S. pregnant women with confirmed Zika virus infection and their infants. Information about the registry is in preparation and will be available on the CDC website.

Serological Survey for Antibodies to Mosquito-Borne Bunyaviruses Among US National Park Service and US Forest Service Employees.

Serum samples from 295 employees of Great Smoky Mountains National Park (GRSM), Rocky Mountain National Park (ROMO), and Grand Teton National Park with adjacent Bridger-Teton National Forest (GRTE-BTNF) were subjected to serological analysis for mosquito-borne bunyaviruses. The sera were analyzed for neutralizing antibodies against six orthobunyaviruses: La Crosse virus (LACV), Jamestown Canyon virus (JCV), snowshoe hare virus (SSHV), California encephalitis virus, and Trivittatus virus (TVTV) belonging to the California serogroup and Cache Valley virus (CVV) belonging to the Bunyamwera serogroup. Sera were also tested for immunoglobulin (Ig) G antibodies against LACV and JCV by enzyme-linked immunosorbent assay (ELISA). The proportion of employees with neutralizing antibodies to any California serogroup bunyavirus was similar in all three sites, with the prevalence ranging from 28% to 36%. The study demonstrated a seroprevalence of 3% to CVV across the three parks. However, proportions of persons with antibodies to specific viruses differed between parks. Participants residing in the eastern regions had a higher seroprevalence to LACV, with 24% (18/75) GRSM employees being seropositive. In contrast, SSHV seroprevalence was limited to employees from the western sites, with 1.7% (1/60) ROMO and 3.8% (6/160) GRTE-BTNF employees being positive. Seroprevalence to JCV was noted in employees from all sites at rates of 6.7% in GRSM, 21.7% in ROMO, and 15.6% in GRTE-BTNF. One employee each from ROMO (1.7%) and GRTE-BTNF (1.9%) were positive for TVTV. This study also has illustrated the greater sensitivity and specificity of plaque reduction neutralization test compared to IgG ELISA in conducting serosurveys for LACV and JCV.

Development and validation of an ELISA kit (YF MAC-HD) to detect IgM to yellow fever virus.

Yellow fever virus (YFV) is endemic in tropical and sub-tropical regions of the world, with around 180,000 human infections a year occurring in Africa. Serologic testing is the chief laboratory diagnostic means of identifying an outbreak and to inform the decision to commence a vaccination campaign. The World Health Organization disseminates the reagents for YFV testing to African reference laboratories, and the US Centers for Disease Control and Prevention (CDC) is charged with producing and providing these reagents. The CDC M-antibody capture ELISA is a 2-day test, requiring titration of reagents when new lots are received, which leads to inconsistency in testing and wastage of material. Here we describe the development of a kit-based assay (YF MAC-HD) based upon the CDC method, that is completed in approximately 3.5h, with equivocal samples being reflexed to an overnight protocol. The kit exhibits >90% accuracy when compared to the 2-day test. The kits were designed for use with a minimum of equipment and are stored at 4°C, removing the need for freezing capacity. This kit is capable of tolerating temporary sub-optimal storage conditions which will ease shipping or power outage concerns, and a shelf life of >6 months was demonstrated with no deterioration in accuracy. All reagents necessary to run the YF MAC-HD are included in the kit and are single-use, with 8 or 24 sample options per kit. Field trials are envisioned for the near future, which will enable refinement of the method. The use of the YF MAC-HD is anticipated to reduce materials wastage, and improve the quality and consistency of YFV serologic testing in endemic areas.

Serologic Survey of Snowshoe Hares (Lepus americanus) in the Greater Yellowstone Area for Brucellosis, Tularemia, and Snowshoe Hare Virus.

We examined sera from snowshoe hares (Lepus americanus) livetrapped in the northern Greater Yellowstone Area (GYA), US, for antibodies to Brucella abortus, Francisella tularensis, and snowshoe hare virus (SSHV). Zero of 90, 0 of 67, and 40 of 100 samples were antibody positive for B. abortus, F. tularensis, and SSHV, respectively. Hares were trapped from 2009 to 2012, and of the six animals that were captured twice with at least 1 yr between captures, four developed antibody to SSHV, indicating active exposure to the agent. These findings suggest snowshoe hares in the GYA do not play a significant role as a reservoir of B. abortus, but do maintain the zoonotic, encephalitic SSHV in the population.

Evaluation of commercially available serologic diagnostic tests for chikungunya virus.

Chikungunya virus (CHIKV) is present or emerging in dengue virus-endemic areas. Infections caused by these viruses share some common signs/symptoms, but prognosis, patient care, and persistent symptoms differ. Thus, accurate diagnostic methods are essential for differentiating the infections. We evaluated 4 CHIKV serologic diagnostic tests, 2 of which showed poor sensitivity and specificity.

Notes from the field: Heartland virus disease - United States, 2012-2013.

Heartland virus is a newly identified phlebovirus that was first isolated from two northwestern Missouri farmers hospitalized with fever, leukopenia, and thrombocytopenia in 2009. Based on the patients' clinical findings and their reported exposures, the virus was suspected to be transmitted by ticks. After this discovery, CDC worked with state and local partners to define the ecology and modes of transmission of Heartland virus, develop diagnostic assays, and identify additional cases to describe the epidemiology and clinical disease. From this work, it was learned that Heartland virus is found in the Lone Star tick (Amblyomma americanum). Six additional cases of Heartland virus disease were identified during 2012-2013; four of those patients were hospitalized, including one with comorbidities who died.

Multiplex microsphere immunoassays for the detection of IgM and IgG to arboviral diseases.

Serodiagnosis of arthropod-borne viruses (arboviruses) at the Division of Vector-Borne Diseases, CDC, employs a combination of individual enzyme-linked immunosorbent assays and microsphere immunoassays (MIAs) to test for IgM and IgG, followed by confirmatory plaque-reduction neutralization tests. Based upon the geographic origin of a sample, it may be tested concurrently for multiple arboviruses, which can be a cumbersome task. The advent of multiplexing represents an opportunity to streamline these types of assays; however, because serologic cross-reactivity of the arboviral antigens often confounds results, it is of interest to employ data analysis methods that address this issue. Here, we constructed 13-virus multiplexed IgM and IgG MIAs that included internal and external controls, based upon the Luminex platform. Results from samples tested using these methods were analyzed using 8 different statistical schemes to identify the best way to classify the data. Geographic batteries were also devised to serve as a more practical diagnostic format, and further samples were tested using the abbreviated multiplexes. Comparative error rates for the classification schemes identified a specific boosting method based on logistic regression "Logitboost" as the classification method of choice. When the data from all samples tested were combined into one set, error rates from the multiplex IgM and IgG MIAs were <5% for all geographic batteries. This work represents both the most comprehensive, validated multiplexing method for arboviruses to date, and also the most systematic attempt to determine the most useful classification method for use with these types of serologic tests.

Detection of anti-yellow fever virus immunoglobulin m antibodies at 3-4 years following yellow fever vaccination.

The duration of anti-yellow fever (YF) virus immunoglobulin M (IgM) antibodies following YF vaccination is unknown, making it difficult to interpret positive IgM antibody results in previously vaccinated travelers. We evaluated the frequency and predictors of YF IgM antibody positivity 3-4 years following YF vaccination. Twenty-nine (73%) of 40 participants had YF IgM antibodies 3-4 years postvaccination. No demographic or exposure variables were predictive of YF IgM positivity. However, persons who were YF IgM positive at 3-4 years postvaccination had earlier onset viremia and higher neutralizing antibody geometric mean titers at 1 month and 3-4 years postvaccination compared with persons who were YF IgM negative. Detection of YF IgM antibodies several years postvaccination might reflect remote YF vaccination rather than recent YF vaccination or YF virus infection.

Development of a human-murine chimeric immunoglobulin M for use in the serological detection of human alphavirus antibodies.

Diagnosis of human alphaviral infections relies on serological techniques, such as the immunoglobulin M antibody capture-enzyme-linked immunosorbent assay (MAC-ELISA). We have humanized the alphavirus broadly cross-reactive murine monoclonal antibody 1A4B-6 to create a reagent capable of replacing human positive sera in the MAC-ELISA for diagnosis of human alphaviral infections.

Laboratory testing practices for West Nile virus in the United States.

We surveyed state public health and commercial diagnostic reference laboratories regarding current testing practices for West Nile virus (WNV). The majority of WNV testing is now performed in commercial diagnostic reference laboratories using commercially available Food and Drug Administration-cleared kits labeled for the presumptive diagnosis of WNV. However, only 25% of surveyed state public health or commercial diagnostic reference laboratories currently have the capacity to perform the recommended confirmatory testing. These findings indicate the need for both manufacturers and laboratories to monitor the performance of these WNV test kits. Further, clinicians should be aware of the limitations of these kits and the need for additional testing to confirm a diagnosis of WNV disease.

Development of human-murine chimeric immunoglobulin G for use in the serological detection of human flavivirus and alphavirus antibodies.

Diagnosis of human arboviral infections relies heavily on serological techniques such as the immunoglobulin M (IgM) antibody capture enzyme-linked immunosorbent assay (MAC-ELISA) and the indirect IgG ELISA. Broad application of these assays is hindered by the lack of standardized positive human control sera that react with a wide variety of flaviviruses (e.g., dengue, West Nile, yellow fever, Japanese encephalitis, Saint Louis encephalitis, and Powassan viruses), or alphaviruses (e.g., Eastern equine encephalitis, Western equine encephalitis, Venezuelan equine encephalitis, and chikungunya viruses) that can cause human disease. We have created human-murine chimeric monoclonal antibodies (cMAbs) by combining the variable regions of flavivirus (6B6C-1) or alphavirus (1A4B-6) broadly cross-reactive murine MAbs (mMAbs) with the constant region of human IgG1. These cMAbs may be used as standardized reagents capable of replacing human infection-immune-positive control sera in indirect IgG ELISA for diagnosis of all human flaviviral or alphaviral infections. The IgG cMAbs secreted from plasmid-transformed Sp2/0-Ag14 cells had serological activity identical to that of the parent mMAbs, as measured by ELISA using multiple flaviviruses or alphaviruses.

Japanese encephalitis virus remains an important cause of encephalitis in Thailand.

Japanese encephalitis virus (JEV) is endemic in Thailand and prevention strategies include vaccination, vector control, and health education.

Household-based sero-epidemiologic survey after a yellow fever epidemic, Sudan, 2005.

From September through early December 2005, an outbreak of yellow fever (YF) occurred in South Kordofan, Sudan, resulting in a mass YF vaccination campaign. In late December 2005, we conducted a serosurvey to assess YF vaccine coverage and to better define the epidemiology of the outbreak in an index village. Of 552 persons enrolled, 95% reported recent YF vaccination, and 25% reported febrile illness during the outbreak period: 13% reported YF-like illness, 4% reported severe YF-like illness, and 12% reported chikungunya-like illness. Of 87 persons who provided blood samples, all had positive YF serologic results, including three who had never been vaccinated. There was also serologic evidence of recent or prior chikungunya virus, dengue virus, West Nile virus, and Sindbis virus infections. These results indicate that YF virus and chikungunya virus contributed to the outbreak. The high prevalence of YF antibody among vaccinees indicates that vaccination was effectively implemented in this remotely located population.

Hospital-based surveillance for Japanese encephalitis at four sites in Bangladesh, 2003-2005.

We investigated the epidemiology and etiology of encephalitis at four tertiary hospitals in Bangladesh during 2003-2005. Patients who met a clinical case definition for acute encephalitis and had cerebrospinal fluid (CSF) pleocytosis were eligible for enrollment; a standardized sampling pattern was used to enroll eligible patients. Recent Japanese encephalitis virus (JEV) infection was defined by presence of IgM antibodies against JEV in CSF or serum. Twenty (4%) of 492 cases had laboratory evidence of recent JEV infection; two died. All JE cases occurred during May-December, and cases were identified among all age groups. All cases resided in rural areas. Fifteen patients were re-assessed 4-6 weeks after hospitalization; 5 (33%) patients had physical disabilities and 7 (47%) reported cognitive difficulties. Infection with JEV is clearly an etiology of encephalitis in Bangladesh. Population-based studies to quantify burden of disease could assess options for targeted immunization programs.

Zika virus outbreak on Yap Island, Federated States of Micronesia.

In 2007, physicians on Yap Island reported an outbreak of illness characterized by rash, conjunctivitis, and arthralgia. Although serum from some patients had IgM antibody against dengue virus, the illness seemed clinically distinct from previously detected dengue. Subsequent testing with the use of consensus primers detected Zika virus RNA in the serum of the patients but no dengue virus or other arboviral RNA. No previous outbreaks and only 14 cases of Zika virus disease have been previously documented.

Validation of a microsphere-based immunoassay for detection of anti-West Nile virus and anti-St. Louis encephalitis virus immunoglobulin m antibodies.

A microsphere-based immunoassay (MIA) was previously developed that is capable of determining the presence of anti-West Nile (WN) virus or anti-St. Louis encephalitis (SLE) virus immunoglobulin M (IgM) antibodies in human serum or cerebrospinal fluid. The original data set on which the classification rules were based comprised 491 serum specimens obtained from the serum bank at the Division of Vector-Borne Infectious Diseases of the Centers for Disease Control and Prevention (DVBID). The classification rules were used to provide a result and to determine whether confirmatory testing was necessary for a given sample. A validation study was coordinated between the DVBID and five state health laboratories to determine (i) the reproducibility of the test between different laboratories, (ii) the correlation between the IgM-enzyme-linked immunosorbent assay (MAC-ELISA) and the MIA, and (iii) whether the initial nonspecific parameters could be refined to reduce the volume of confirmatory testing. Laboratorians were trained in the method, and reagents and data analysis software developed at the DVBID were shipped to each validating laboratory. Validating laboratories performed tests on approximately 200 samples obtained from their individual states, the collections of which comprised approximately equal numbers of WN virus-positive and -negative samples, as determined by MAC-ELISA. In addition, 377 samples submitted to the DVBID for arbovirus testing were analyzed using the MIA and MAC-ELISA at the DVBID only. For the specimens tested at both the state and the DVBID laboratories, a correlation of results indicated that the technology is readily transferable between laboratories. The detection of IgM antibodies to WN virus was more consistent than detection of IgM antibodies to SLE virus. Some changes were made to the analysis software that resulted in an improved accuracy of diagnosis.

Chikungunya virus in US travelers returning from India, 2006.

Chikungunya virus (CHIKV), a mosquito-borne alphavirus, is endemic in Africa and Asia. In 2005-2006, CHIKV epidemics were reported in islands in the Indian Ocean and in southern India. We present data on laboratory-confirmed CHIKV infections among travelers returning from India to the United States during 2006.